→ Homework 17

Symbolic math

Problem 1

Part a

Import the library needed for using symbolic math in python. Also setup the notebook for printing.

▼ Part b

Set variables x, y, z, and function f, and g.

▼ Part c

Set an expression for the following:

$$x^2 + 2x - 5$$
.

▼ Part d

Evaluate the expression for x=1.5 . Also, make a variable substitution: z for x . Do a variable substitution y^2 for ${\bf x}$.

▼ Problem 2

Part a

Simplify the following expression:

$$\frac{x^2 - x - 6}{x^2 - 3x}.$$

▼ Part b

Expand the following expression symbolically:

$$(x+1)^3(x-2)^2$$
.

▼ Part c

Factor the following expression:

$$3x^4 - 36x^3 + 99x^2 - 6x - 144$$
.

▼ Problem 3

Part a

Compute the symbolic derivative:

$$\frac{d}{dx}\sin^2(x)e^{2x}$$
.

Then evaluate the resulting expression for x = 3.3.

▼ Part b

Create a sympy expression representing the following integral:

$$\int_0^5 x^2 \sin(x^2) dx.$$

Then evaluate the integral symbolically.

▼ Problem 4

Part a

Solve for the roots of the following equation:

$$x^3 + 15x^2 = 3x - 10.$$

Use the Eq and solve functions and save as an expression. Show the expression (it will be a list). Then find the numerical value of each root using the evalf function. You can use evalf on some expression using my_expression.evalf().

▼ Part b

Solve the system of three equations in three unknowns symbolically:

$$x + y + z = 0$$
$$2x - y - z = 10$$
$$y + 2z = 5$$

Compare the result to the answer computed with fsolve from scipy.optimize.

▼ Part c

Solve the following differential equation symbolically using the dsolve function:

$$\frac{df(x)}{dx} = x\cos(x).$$

▼ Problem 5

Part a

For the system Ax=b with

$$A = \left[egin{array}{ccc} 1 & 2 & 5 \ 3 & 4 & 6 \ -1 & 0 & 3 \end{array}
ight],$$
 $b = \left[egin{array}{ccc} 1 \ 0 \ -2 \end{array}
ight].$

Setup the matrices ${\cal A}$ and ${\it b}$

▼ Part b

For the system in Part a, solve for matrix \boldsymbol{x} by matrix algebra.

▼ Part c

For matrix A above, return the middle row, and the middle column.

▼ Part d

Create a matrix M using the zeros function that has 2 rows and 2 columns. Fill in some values using array notation (like M[i,j]=value).