→ HW8: Arrays and Loops

▼ Problem 1

Import	Numpy
---------------	-------

- a) Create an array of 50 ones called x.
- b) Create an array from 1-20 with 50 equally-spaced elements two different ways (using a loop and a single command). Call the two arrays y and z.
- c) Subtract y from z and report the sum of the absolute difference of each element to show that they are the same.

▼ Problem 2

import the python package "random"

- a) Create a matrix, M, as a 1x1 numpy array of value 1
- b) Using a while loop, append a random integer between 1 and 10 to the end of matrix M until the last element is a 7.
- c) Report the number of elements in ${\cal M}$ and the mean value of the elements after the loop.

d) Also, because a while loop is easily susceptible to infinite loops, create a variable i to keep track of how many times you have gone through the while loop. If i exceeds 30, immediately exit the while loop. Don't report the matrix size using i.

You may need to search online (e.g. Google) how to create a random integer using the random package and how to append elements to a numpy array.

Problem 3

Using the following array, a:

Reshape the array to a 5x5 matrix (using a numpy command)

Loop through each element of the array. If the element value is 5 or 8, print the element index. Also, keep track of how many 5s and 8s there are with variable k. Print k. If the element value is a 1, print "You win!"

$$a = np.array([8.,3.,10.,8.,2.,2.,10.,10.,5.,10.,2.,10.,9.,10.,9.,4.,2.,8.,7.,4.,1.,4.,5.,6.]$$

▼ Problem 4

For the following arrays (matrices and vectors):

$$A = egin{bmatrix} 1.1 & 2.5 & 3.2 \ 4.8 & 5.0 & 6.1 \ 7.3 & 8.9 & 9.1 \end{bmatrix}$$

$$x = egin{bmatrix} 1 \ 3 \ 4 \end{bmatrix}$$

$$B = \left[egin{array}{cccc} -0.1 & -0.2 & -0.3 \ 3 & 10 & 2 \ 4 & 2 & 0.5 \end{array}
ight]$$

Perform the following operations:

- a) $A\circ B$ (element-wise multiplication)
- b) $A \bullet B$ (dot product multiplication)
- c) A imes B (cross product multiplication)
- d) $A \bullet x$
- e) $A^{-1} \bullet B$