ChEn 263, Practice Exam 1

Name				

READ THE FOLLOWING BUT DON'T TURN THE PAGE UNTIL INSTRUCTED

In class exam (50 minutes)

Closed Book, Closed Notes, Closed Internet

Download file Exam1_Practice.xlsx from learningsuite.byu.edu

Save often, using Ctrl-s

When you are finished, save again and upload to Learning Suite.

Keep a backup copy of the exam, but DO NOT OPEN IT OR CHANGE IT after the exam.

RETURN THIS HARD COPY AFTER THE EXAM

RULES—GUIDELINE—SUGGESTIONS

Show appropriate work, label cells, include intermediate formulas etc.

Be organized

Think before you type

More points are given if I can tell what you did

Be organized

Problem 1

We are simulating a reversible chemical reaction as follows:

The rate of change of the concentrations A and B are given by

$$dA/dt = -k_1 A + k_2 B^2$$

$$dB/dt = 2 k_1 A - 2 k_2 B^2$$

(Here, symbols A and B denote the species concentrations in mol/L). The initial concentrations are $A_0=1$ mol/L and $B_0=0$ mol/L. Also, $k_1=0.2$ 1/s and $k_2=0.1$ L/mol-s (As initial guesses for part a).

- a) Solve for the concentrations of A and B as functions of time. Use a timestep size of dt=0.5 s and solve to t=10 s. Hint: use Euler's equation applied to each d(Species)/dt above: $dy/dt = f(y,z) --> y_{n+1} = y_n + dt^*f(y_n, z_n)$.
- b) Measurement data for the concentration B is stored in column D of Worksheet "1-Reaction". Adjust the values of $\mathbf{k_1}$ and $\mathbf{k_2}$ to best align the model predictions with the measured data by minimizing a sum of squared errors. Does the data suggest that the reaction is irreversible (is $\mathbf{k_2} = 0$)?
- c) **Plot** the predicted concentrations of A and B and the measured concentration of B as functions of time on the same plot. Label the axes as "time (s)" and "concentration (mol/L)".

Problem 2

Your Excel workbook under worksheet "2-Population Data" has data for country populations from the year 1990 to 2010. For the 5 largest countries as of 1990, compute the growth each year as Growth = (Current Population in Year i+1 – Population in Year i) / (Population in Year i) for Years 1991-2010. Show the results in % in Worksheet "2-Population Analysis".

- a) Find the min and max of each country's growth data over the 20 years (use functions for this).
- b) **Create 5 bins** with evenly spaced values between 0.5% and 2.5%.
- c) **Find the histogram** of the data using the FREQUENCY function to determine the number of points in each bin.
- d) **Plot the data** using a column plot. The x-axis numbers should have the correct bin values.

Problem 3

Find a solution to the following set of equations and put the answer in the Worksheet named "3-Linear Solve".

$$x_1 + 2x_2 = 5$$

$$x_3 + 5x_1 = x_2 + 10$$

$$x_4 - 3x_3 + 15 = 0$$

$$x_1 + x_2 + x_3 + x_4 = 0$$

Hint: Use the MINVERSE and MMULT functions in Excel to find the solution. The solution to $\mathbf{A} \mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$. Use CTRL-SHIFT-Enter to fill in the matrix solution.