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Laplace Transforms



C
h

a
p

te
r 

3

2

Laplace Transforms

• Important analytical method for solving linear ordinary

differential equations.

- Application to nonlinear ODEs? Must linearize first.

• Laplace transforms play a key role in important process  

control concepts and techniques.

- Examples: 

• Transfer functions 

• Frequency response

• Control system design

• Stability analysis
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[ ] ( )
0

( ) ( ) (3-1)stF s f t f t e dt
∞ −= = ∫L

Definition

The Laplace transform of a function, f(t), is defined as

where F(s) is the symbol for the Laplace transform, L is the 

Laplace transform operator, and f(t) is some function of time, t.

Note: The L operator transforms a time domain function f(t) 

into an s domain function, F(s). 
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Inverse Laplace Transform, L-1:

By definition, the inverse Laplace transform operator, L-1, 

converts an s-domain function back to the corresponding time 

domain function:

( ) ( )1
f t F s

−  =  L

Important Properties:

Both L and L-1 are linear operators. Thus,

( ) ( ) ( ) ( )

( ) ( ) (3-3)

ax t by t a x t b y t

aX s bY s

     + = +     

= +

L L L
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where:

- x(t) and y(t) are arbitrary functions

- a and b are constants

-

Similarly,

( ) ( ) ( ) ( )1
aX s bY s ax t b y t

−  + = + L

( )[ ] ( ) ( )[ ]tyLsYandtxLsX ==)(
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Laplace Transforms of Common 

Functions

1. Constant Function

Let f(t) = a (a constant). Then from the definition of the 

Laplace transform in (3-1),

( )
0

0

0 (3-4)st sta a a
a ae dt e

s s s

∞

∞ − −  
= = − = − − = 

 
∫L
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2. Step Function

The unit step function is widely used in the analysis of process 

control problems. It is defined as:

( )
0 for 0

(3-5)
1 for 0

t
S t

t

<


≥
�

Because the step function is a special case of a “constant”, it 

follows from (3-4) that

( )
1

(3-6)S t
s

  = L

=
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3. Derivatives

This is a very important transform because derivatives appear 

in the ODEs we wish to solve. In the text (p.41), it is shown 

that

( ) ( )0 (3-9)
df

sF s f
dt

 
= −  

L

initial condition at t = 0

Similarly, for higher order derivatives:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 2

2 1

0 0

... 0 0 (3-14)

n
n n n

n

n n

d f
s F s s f s f

dt

sf f

− −

− −

 
= − − − 

  

− − −

L

First derivative
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where:

- n is an arbitrary positive integer

- ( ) ( )
0

0
k

k

k
t

d f
f

dt =

�

Special Case: All Initial Conditions are Zero

Suppose Then

In process control problems, we usually assume zero initial 

conditions. Reason: This corresponds to the nominal steady state 

when “deviation variables” are used, as shown in Ch. 4.

( ) ( ) ( ) ( ) ( )1 1
0 0 ... 0 .

n
f f f

−
= = =

( )
n

n

n

d f
s F s

dt

 
= 

  
L

=
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4. Exponential Functions

Consider where b > 0. Then, ( ) bt
f t e

−=

( )

( )

0 0

0

1 1
(3-16)

b s tbt bt st

b s t

e e e dt e dt

e
b s s b

∞ ∞ − +− − −

∞
− +

  = =
 

 = − =
 + +

∫ ∫L

5. Rectangular Pulse Function

It is defined by:

( )

0 for 0

for 0 (3-20)

0 for

w

w

t

f t h t t

t t

<


= ≤ <
 ≥
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h

( )f t

wt

Time, t

The Laplace transform of the rectangular pulse is given by

( ) ( )1 (3-22)w
t sh

F s e
s

−
= −
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6. Impulse Function (or Dirac Delta Function)

The impulse function is obtained by taking the limit of the

rectangular pulse as its width, tw, goes to zero but holding

the area under the pulse constant at one. (i.e., let )

Let,

Then, 

1

w

h
t

=

( )tδ � impulse function

( ) 1tδ  = L

=
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Table 3.1. Laplace Transforms
See page 42 of the text.
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Laplace table (cont.)
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Practice

a. 1000 S(t)  (Step function with a magnitude of 1000)  

b. 5e-6t + sin 4t + 5

c.
d 3 y

dt
3    where  

d2 y

dt
2

 

 
  

 
t =0

= 0,
dy

dt

 
 

 
 

t = 0

= 2,   y 0( ) = 3

s

1000

sss

5

16

4

6

5
2

+
+

+
+

( ) ( ) ( ) ( ) sssFssssFs −−=−−− 2323 3023
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Solution of ODEs by Laplace Transforms

Procedure:

1. Take the L of both sides of the ODE.

2. Rearrange the resulting algebraic equation in the s domain to 

solve for the L of the output variable, e.g., Y(s).

3. Perform a partial fraction expansion.

4. Use the L-1 to find y(t) from the expression for Y(s).
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Practice

dy

dt
 +  3y =  e     y(0) =  2-2t

Solve the following equation:

( )

( )

( )

( )( )
( )

( )( )32

252

32

52
)(

2

52

2

142

2

1
2)(3

2

1
2)(3

2

1
)(32

++

+
=

++

+
=

+

+
=

+

++
=

+
+=+

+
=−+

+
=+−

ss

s

ss

s
sY

s

s

s

s

s
sYs

s
sYs

s
sYssY

Use #11 in Table 3.1

tt

tt

eety

eety

32

32

)(

23

22/5

23

22/5
2)(

−−

−−

+=


















−

−
+









−

−
=

tt eety 32)( −− +=

Check Answer:

tt

tt

eety

eety

y

32

32

33)(3

32)(

211)0(

−−

−−

+=

−−=′

=+=

t
etyty

2)(3)( −=+′
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Partial Fraction Expansions

Basic idea: Expand a complex expression for Y(s) into 

simpler terms, each of which appears in the Laplace 

Transform table. Then you can take the L-1 of both sides of 

the equation to obtain y(t).

Example:

( )
( )( )

5
(3-41)

1 4

s
Y s

s s

+
=

+ +

Perform a partial fraction expansion (PFE)

( )( )
1 25

(3-42)
1 4 1 4

s

s s s s

α α+
= +

+ + + +

where coefficients       and       have to be determined.1α 2α
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To find       :  Multiply both sides by s + 1 and let s = -11α

1
1

5 4

4 3s

s

s
α

=−

+
∴ = =

+

To find       :  Multiply both sides by s + 4 and let s = -42α

2
4

5 1

1 3s

s

s
α

=−

+
∴ = = −

+
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A General PFE

Consider a general expression,

( )
( )

( )

( )

( )
1

(3-46a)
n

i
i

N s N s
Y s

D s
s bπ

=

= =

+

Here D(s) is an n-th order polynomial with the roots                    

all being real numbers which are distinct so there are no repeated 

roots.

The PFE is:

( )is b= −

( )
( )

( ) 1

1

(3-46b)
n

i
n

ii
i

i

N s
Y s

s b
s b

α

π =

=

= =
+

+

∑

Note: D(s) is called the “characteristic polynomial”.
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Special Situations:

Two other types of situations commonly occur when D(s) has:

i) Complex roots: e.g., 

ii) Repeated roots (e.g.,                     )

For these situations, the PFE has a different form. See SEM

text (pp. 47-48) for details.

( )3 4 1ib j j= ± −�

1 2 3b b= = −

=
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Partial Fraction Example

12s2 + 22s + 6

s s +1( ) s + 2( )
=

α1

s
+

α2

s +1
+

α 3

s + 2

( )
( )( ) 2121

62212 321

2

+
+

+
+=

++

++

s

s

s

s

s

s

sss

sss ααα

To get α1, multiply both sides by s and set s = 0

( )
( )( )

32/6
2010

6022012
1

2

===
++

+⋅+⋅
α

( ) ( )( )
( ) ( )( )

4
1

4

211

6122112
2

2

=
−

−
==

+−−

+−⋅+−⋅
α

( ) ( )( )
( ) ( )( )

5
2

10

122

6222212
3

2

===
+−−

+−⋅+−⋅
α

2

5

1

43

+
+

+
+=

sss

So now solve for f(t):

tt
eetf

2543)( −− ++=

Now get α2:

Finally get α3:
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Repeated Factors

F(s) =
s +1

(s + 3)
2 =

α1

s + 3
+

α2

(s + 3)
2

How do you get α1 and α2?

Multiply out denominators and match “like” powers of s.

( )

( ) ( ) ( )21121

2

2

2

2

1

2

2

3)3(1

)3(

)3(

3

)3(

)3(

)3(1

ααααα

αα

++=++=+

+

+
+

+

+
=

+

++

sss

s

s

s

s

s

ss

Therefore, α1 = 1, and 3 α1 + α2 = 1. This means that α2 = -2.

So 
22 )3(

2

3

1

)3(

1
)(

+

−
+

+
=

+

+
=

sss

s
sF

tt teetf 33 2)( −− −=Inverting
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Additional Notes

( ) ( )[ ]sYsy s 0lim →=∞

( ) ( )[ ]sYsy s ∞→= lim0

( ) ( ) ( ){ } ( )sFettSttfLsG
ts 0

00

−
=−−=

1.  Final value theorem (Eq. 3-81)

2.  Initial value theorem (Eq. 3-82)

3.  Time delay 
(Real Translation Theorem, Eq. 3-96)
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More Practice
Practice: Write the Laplace form of a function that does the 
doublet test, 

(a) changing at t=0 to a value of 2, 

(b) changing to a value of -2 at t = 3 min, and 

(c) changing to a value of 0 at t = 6 min.









+






 −
+ −−

s
e

s
e

s

ss 242 63
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More Practice

Write the time domain form of the 
following Laplace function and sketch it: 

2

9

2

6

2

3 363

s
e

s
e

s
e sss −−− +−

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]993666333 −−+−−−−− tSttSttSt

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

time

f(
t)
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More Practice

Determine the final value of the 

following function: 

( )
( )( )21

62212 2

++

++
=

sss

ss
sF

( )
( )

( )( )
( )

( )( )
3

21

6

21

62212
0

2

==
++

++
==

sss

sss
sF
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Extra
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Example 3.1

Solve the ODE,

( )5 4 2 0 1 (3-26)
dy

y y
dt

+ = =

First, take L of both sides of (3-26),

( )( ) ( )
2

5 1 4sY s Y s
s

− + =

Rearrange,

( )
( )
5 2

(3-34)
5 4

s
Y s

s s

+
=

+

Take L-1,

( )
( )

1 5 2

5 4

s
y t

s s

−
 +

=  
+ 

L

From Table 3.1,

( ) 0.80.5 0.5 (3-37)t
y t e

−= +

How do you get (3-37)?
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Partial Fraction Expansion

( )
( )

1 5 2

5 4

s
y t

s s

−  +
=  

+ 
L

( ) ( )8.0

4.0

5

4
5

2

45

25

+

+
=









+

+
=

+

+

ss

s

ss

s

ss

s

( ) ( ) ( ) ( ) ( )8.0

4.0

8.0

1

8.0

4.0

8.08.0

4.0

+
+

+
=

+
+

+
=

+

+

sssssss

s

ss

s

( ) ( )
( )





−

−
+=









+
+

+

−−− 1
8.0

1
4.0

8.0

4.0

8.0

1 8.08.01 tt
ee

sss
L

( )[ ] ttt eee 8.08.08.0 5.05.015.0 −−− +=−−=

(#9 in table with

b1 = 0)
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Example 3.2 (continued)

Recall that the ODE, , with zero initial 

conditions resulted in the expression

( )
( )3 2

1
(3-40)

6 11 6
Y s

s s s s
=

+ + +

The denominator can be factored as

( ) ( )( )( )3 26 11 6 1 2 3 (3-50)s s s s s s s s+ + + = + + +

Note: Normally, numerical techniques are required in order to 

calculate the roots.

The PFE for (3-40) is

( )
( )( )( )

31 2 41
(3-51)

1 2 3 1 2 3
Y s

s s s s s s s s

αα α α
= = + + +

+ + + + + +

6 11 6 1y y y y+ + + + =&&& && &
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Solve for coefficients to get

1 2 3 4

1 1 1 1
, , ,

6 2 2 6
α α α α= = − = = −

(For example, find     , by multiplying both sides by s and then 

setting s = 0.)

1/ 6 1/ 2 1/ 2 1/ 6
( )

1 2 3
Y s

s s s s
= − + +

+ + +

Take L-1 of both sides:

( )1 1 1 1 11/ 6 1/ 2 1/ 2 1/ 6

1 2 3
Y s

s s s s

− − − − −       
  = − + +         + + +       

L L L L L

Substitute numerical values into (3-51):

From Table 3.1,

( ) 2 31 1 1 1
(3-52)

6 2 2 6

t t t
y t e e e

− − −= − + −

α
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Important Properties of Laplace Transforms

1. Final Value Theorem

It can be used to find the steady-state value of a closed  loop 

system (providing that a steady-state value exists.

Statement of FVT:

( ) ( )
0

limlim
t s

sY sy t
→∞ →

 =  

providing that the limit exists (is finite) for all                       

where Re (s) denotes the real part of complex 

variable, s. 

( )Re 0,s ≥
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Example:

Suppose,

( )
( )
5 2

(3-34)
5 4

s
Y s

s s

+
=

+

Then,

( ) ( )
0

5 2
lim 0.5lim

5 4t s

s
y y t

s→∞ →

+ 
∞ = = = + 


