Class 16 Laplace Transforms

Laplace Transforms

- Important analytical method for solving linear ordinary differential equations.
- Application to nonlinear ODEs? Must linearize first.
- Laplace transforms play a key role in important process control concepts and techniques.
- Examples:
- Transfer functions
- Frequency response
- Control system design
- Stability analysis

Definition

The Laplace transform of a function, $f(t)$, is defined as

$$
\begin{equation*}
F(s)=L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{3-1}
\end{equation*}
$$

where $F(s)$ is the symbol for the Laplace transform, L is the Laplace transform operator, and $f(t)$ is some function of time, t.

Note: The L operator transforms a time domain function $f(t)$ into an s domain function, $F(s)$.

Inverse Laplace Transform, L^{-1} :

By definition, the inverse Laplace transform operator, L^{-1}, converts an s-domain function back to the corresponding time domain function:

$$
f(t)=\mathrm{L}^{-1}[F(s)]
$$

Important Properties:

Both L and L^{-1} are linear operators. Thus,

$$
\begin{align*}
\mathrm{L}[a x(t)+b y(t)] & =a \mathrm{~L}[x(t)]+b\llcorner[y(t)] \\
& =a X(s)+b Y(s) \tag{3-3}
\end{align*}
$$

where:

- $x(t)$ and $y(t)$ are arbitrary functions
- $\quad a$ and b are constants

$$
\text { - } X(s)=L[x(t)] \text { and } Y(s)=L[y(t)]
$$

Similarly,

$$
\mathrm{L}^{-1}[a X(s)+b Y(s)]=a x(t)+b y(t)
$$

Laplace Transforms of Common Functions

1. Constant Function

Let $f(t)=a$ (a constant). Then from the definition of the Laplace transform in (3-1),

$$
\begin{equation*}
\mathrm{L}(a)=\int_{0}^{\infty} a e^{-s t} d t=-\left.\frac{a}{s} e^{-s t}\right|_{0} ^{\infty}=0-\left(-\frac{a}{s}\right)=\frac{a}{s} \tag{3-4}
\end{equation*}
$$

2. Step Function

The unit step function is widely used in the analysis of process control problems. It is defined as:

$$
S(t)= \begin{cases}0 & \text { for } t<0 \tag{3-5}\\ 1 & \text { for } t \geq 0\end{cases}
$$

Because the step function is a special case of a "constant", it follows from (3-4) that

$$
\begin{equation*}
\mathrm{L}[S(t)]=\frac{1}{s} \tag{3-6}
\end{equation*}
$$

3. Derivatives

This is a very important transform because derivatives appear in the ODEs we wish to solve. In the text (p.41), it is shown that

$$
\begin{equation*}
\mathrm{L}\left[\frac{d f}{d t}\right]=s F(s)-f(0) \tag{3-9}
\end{equation*}
$$

initial condition at $t=0$
Similarly, for higher order derivatives:
First derivative

$$
\begin{align*}
\mathrm{L}\left[\frac{d^{n} f}{d t^{n}}\right] & =s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{(1)}(0)- \\
& -\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0) \tag{3-14}
\end{align*}
$$

where:
$-n$ is an arbitrary positive integer

$$
-f^{(k)}(0)=\left.\frac{d^{k} f}{d t^{k}}\right|_{t=0}
$$

Special Case: All Initial Conditions are Zero
Suppose $f(0)=f^{(1)}(0)=\ldots=f^{(n-1)}(0)$. Then

$$
\mathrm{L}\left[\frac{d^{n} f}{d t^{n}}\right]=s^{n} F(s)
$$

In process control problems, we usually assume zero initial conditions. Reason: This corresponds to the nominal steady state when "deviation variables" are used, as shown in Ch. 4.

4. Exponential Functions

Consider $f(t)=e^{-b t}$ where $b>0$. Then,

$$
\begin{align*}
\mathrm{L}\left[e^{-b t}\right] & =\int_{0}^{\infty} e^{-b t} e^{-s t} d t=\int_{0}^{\infty} e^{-(b+s) t} d t \\
& =\frac{1}{b+s}\left[-e^{-(b+s) t}\right]_{0}^{\infty}=\frac{1}{s+b} \tag{3-16}
\end{align*}
$$

5. Rectangular Pulse Function

It is defined by:

$$
f(t)=\left\{\begin{array}{l}
0 \text { for } t<0 \tag{3-20}\\
h \text { for } 0 \leq t<t_{w} \\
0 \text { for } t \geq t_{w}
\end{array}\right.
$$

Time, t

The Laplace transform of the rectangular pulse is given by

$$
\begin{equation*}
F(s)=\frac{h}{s}\left(1-e^{-t_{w} s}\right) \tag{3-22}
\end{equation*}
$$

6. Impulse Function (or Dirac Delta Function)

The impulse function is obtained by taking the limit of the rectangular pulse as its width, t_{w}, goes to zero but holding the area under the pulse constant at one. (i.e., let $h=\frac{1}{t_{w}}$)
Let, $\quad \delta(t)=$ impulse function

Let, $\quad \delta(t)=$ impulse function
Then, $\quad \mathrm{L}[\delta(t)]=1$

Table 3.1. Laplace Transforms See page 42 of the text.

Table 3.1 Laplace Transforms for Various Time-Domain Functions ${ }^{a}$

$f(t)$

$F(s)$

$f(t)$	$F(s)$
1. $\delta(t)$ (unit impulse)	1
2. $S(t)$ (unit step)	$\frac{1}{s}$
3. t (ramp)	$\frac{1}{s^{2}}$
4. t^{n-1}	$\frac{(n-1)!}{s^{n}}$
5. $e^{-b t}$	$\frac{1}{s+b}$
6. $\frac{1}{\tau} e^{-l / \tau}$	$\frac{1}{\tau s+1}$
7. $\frac{t^{n-1} e^{-b t}}{(n-1)!} \quad(n>0)$	$\frac{1}{(s+b)^{n}}$
8. $\frac{1}{\tau^{n}(n-1)!} t^{n-1} e^{-l /}$	$\frac{1}{(\tau s+1)^{n}}$
9. $\frac{1}{b_{1}-b_{2}}\left(e^{-b_{2} t}-e^{-b_{1} t}\right)$	$\frac{1}{\left(s+b_{1}\right)\left(s+b_{2}\right)}$
10. $\frac{1}{\tau_{1}-\tau_{2}}\left(e^{-t / \tau_{1}}-e^{-t / \tau_{2}}\right)$	$\frac{1}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
11. $\frac{b_{3}-b_{1}}{b_{2}-b_{1}} e^{-b_{1} t}+\frac{b_{3}-b_{2}}{b_{1}-b_{2}} e^{-b_{2} t}$	$\frac{s+b_{3}}{\left(s+b_{1}\right)\left(s+b_{2}\right)}$
12. $\frac{1}{\tau_{1}} \frac{\tau_{1}-\tau_{3}}{\tau_{1}-\tau_{2}} e^{-l_{1}+1}+\frac{1}{\tau_{2}} \frac{\tau_{2}-\tau_{3}}{\tau_{2}-\tau_{1}} e^{-\psi_{2}}$	$\frac{\tau_{3} s+1}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
13. $1-e^{-t / \tau}$	$\frac{1}{s(\tau s+1)}$

Laplace table (cont.)

14. $\sin \omega t$
15. $\cos \omega t$
16. $\sin (\omega t+\phi)$
17. $e^{-b t} \sin \omega t$
18. $e^{-b t} \cos \omega t$

$$
\begin{aligned}
& \text { 19. } \frac{1}{\tau \sqrt{1-\zeta^{2}}} e^{-\zeta t / \tau} \sin \left(\sqrt{1-\zeta^{2}} t / \tau\right) \\
& (0 \leq|\zeta|<1)
\end{aligned}
$$

20. $1+\frac{1}{\tau_{2}-\tau_{1}}\left(\tau_{1} e^{-l / \tau_{1}}-\tau_{2} e^{-t / \tau_{2}}\right)$

$$
\left(\tau_{1} \neq \tau_{2}\right)
$$

21. $1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta / \tau} \sin \left[\sqrt{1-\zeta^{2}} t / \tau+\psi\right]$ $\psi=\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}, \quad(0 \leq|\zeta|<1)$
22. $1-e^{-\zeta t / \tau}\left[\cos \left(\sqrt{1-\zeta^{2}} t / \tau\right)\right.$
$\frac{\omega}{s^{2}+\omega^{2}}$
$\frac{s}{s^{2}+\omega^{2}}$
$\frac{\omega \cos \phi+s \sin \phi}{s^{2}+\omega^{2}}$
$\left\{\begin{array}{l}\frac{\omega}{(s+b)^{2}+\omega^{2}} \\ \frac{s+b}{(s+b)^{2}+\omega^{2}}\end{array}\right.$
$\frac{1}{\tau^{2} s^{2}+2 \zeta \tau s+1}$
$\frac{1}{s\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
$\frac{1}{s\left(\tau^{2} s^{2}+2 \zeta \tau s+1\right)}$
$\frac{1}{s\left(\tau^{2} s^{2}+2 \zeta \tau s+1\right)}$
23. $1+\frac{\tau_{3}-\tau_{1}}{\tau_{1}-\tau_{2}} e^{-t / \tau_{1}}+\frac{\tau_{3}-\tau_{2}}{\tau_{2}-\tau_{1}} e^{-t / \tau_{2}}$
$\left(\tau_{1} \neq \tau_{2}\right)$
24. $\frac{d f}{d t}$
25. $\frac{d^{n} f}{d t^{n}}$
26. $f\left(t-t_{0}\right) S\left(t-t_{0}\right)$
$\frac{\tau_{3} s+1}{s\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$

$$
s F(s)-f(0)
$$

$$
s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{(1)}(0)-\cdots
$$

$$
-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

$e^{-t_{0} s} F(s)$

Practice

a. $1000 \mathbf{S}(\mathrm{t})$ (Step function with a magnitude of 1000) 1000

b. $5 e^{-6 t}+\sin 4 t+5$

$$
\frac{5}{s+6}+\frac{4}{s^{2}+16}+\frac{5}{s}
$$

c. $\frac{d^{3} y}{d t^{3}}$ where $\left(\frac{d^{2} y}{d t^{2}}\right)_{t=0}=0,\left(\frac{d y}{d t}\right)_{t=0}=2, \quad y(0)=3$

$$
s^{3} F(s)-s^{2}(3)-s(2)-0=s^{3} F(s)-3 s^{2}-s
$$

Solution of ODEs by Laplace Transforms

Procedure:

1. Take the L of both sides of the ODE.
2. Rearrange the resulting algebraic equation in the s domain to solve for the L of the output variable, e.g., $Y(s)$.
3. Perform a partial fraction expansion.
4. Use the L^{-1} to find $y(t)$ from the expression for $Y(s)$.

Practice

Solve the following equation:

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=e^{-2 t} \quad y(0)=2 \\
& s Y(s)-2+3 Y(s)=\frac{1}{s+2} \\
& (s+3) Y(s)-2=\frac{1}{s+2} \quad \begin{array}{l}
y(t)=e^{-2 t}+e^{-3 t} \\
(s+3) Y(s)=2+\frac{1}{s+2}=\frac{2 s+4+1}{s+2}=\frac{2 s+5}{s+2} \\
Y(s)=\frac{2 s+5}{(s+2)(s+3)}=\frac{2(s+5 / 2)}{(s+2)(s+3)} \\
\begin{array}{ll}
\text { Use \#11 in Table 3.1 }
\end{array} \\
y(t)=2\left[\left(\frac{5 / 2-2}{3-2}\right) e^{-2 t}+\left(\frac{5 / 2-2}{3-2}\right) e^{-3 t}\right] \\
y(t)=e^{-2 t}+e^{-3 t}
\end{array} \begin{array}{l}
y^{\prime}(t)=-2 e^{-2 t}-3 e^{-3 t} \\
\frac{3 y(t)=3 e^{-2 t}+3 e^{-3 t}}{y^{\prime}(t)+3 y(t)=e^{-2 t}}
\end{array}
\end{aligned}
$$

Partial Fraction Expansions

Basic idea: Expand a complex expression for $Y(s)$ into simpler terms, each of which appears in the Laplace Transform table. Then you can take the L^{-1} of both sides of the equation to obtain $y(t)$.

Example:

$$
\begin{equation*}
Y(s)=\frac{s+5}{(s+1)(s+4)} \tag{3-41}
\end{equation*}
$$

Perform a partial fraction expansion (PFE)

$$
\begin{equation*}
\frac{s+5}{(s+1)(s+4)}=\frac{\alpha_{1}}{s+1}+\frac{\alpha_{2}}{s+4} \tag{3-42}
\end{equation*}
$$

where coefficients α_{1} and α_{2} have to be determined.

To find α_{1} : Multiply both sides by $s+1$ and let $s=-1$

$$
\therefore \quad \alpha_{1}=\left.\frac{s+5}{s+4}\right|_{s=-1}=\frac{4}{3}
$$

To find α_{2} : Multiply both sides by $s+4$ and let $s=-4$
Chapter 3

$$
\therefore \quad \alpha_{2}=\left.\frac{s+5}{s+1}\right|_{s=-4}=-\frac{1}{3}
$$

A General PFE

Consider a general expression,

$$
\begin{equation*}
Y(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{\prod_{i=1}^{n}\left(s+b_{i}\right)} \tag{3-46a}
\end{equation*}
$$

Here $D(s)$ is an n-th order polynomial with the roots $\left(s=-b_{i}\right)$ all being real numbers which are distinct so there are no repeated roots.

The PFE is:

$$
\begin{equation*}
Y(s)=\frac{N(s)}{\prod_{i=1}^{n}\left(s+b_{i}\right)}=\sum_{i=1}^{n} \frac{\alpha_{i}}{s+b_{i}} \tag{3-46b}
\end{equation*}
$$

Note: $D(s)$ is called the "characteristic polynomial".

Special Situations:

Two other types of situations commonly occur when $D(s)$ has:
i) Complex roots: e.g., $b_{i}=3 \pm 4 j \quad(j=\sqrt{-1})$
ii) Repeated roots (e.g., $b_{1}=b_{2}=-3$)

For these situations, the PFE has a different form. See SEM text (pp. 47-48) for details.

Partial Fraction Example

$$
\frac{12 s^{2}+22 s+6}{s(s+1)(s+2)}=\frac{\alpha_{1}}{s}+\frac{\alpha_{2}}{s+1}+\frac{\alpha_{3}}{s+2}=\frac{3}{s}+\frac{4}{s+1}+\frac{5}{s+2}
$$

To get α_{1}, multiply both sides by s and set $s=0$
$\frac{s\left(12 s^{2}+22 s+6\right)}{s(s+1)(s+2)}=\frac{s \alpha_{1}}{s}+\frac{s \alpha_{2}}{s+1}+\frac{s \alpha_{3}}{s+2}$
$\frac{\left(12 \cdot 0^{2}+22 \cdot 0+6\right)}{(0+1)(0+2)}=\alpha_{1}=6 / 2=3$
Now get α_{2} :

$$
\frac{\left(12 \cdot(-1)^{2}+22 \cdot(-1)+6\right)}{(-1)((-1)+2)}=\alpha_{2}=\frac{-4}{-1}=4
$$

Finally get α_{3} :

$$
\frac{\left(12 \cdot(-2)^{2}+22 \cdot(-2)+6\right)}{(-2)((-2)+1)}=\alpha_{3}=\frac{10}{2}=5
$$

So now solve for $f(t)$:

$$
f(t)=3+4 e^{-t}+5 e^{-2 t}
$$

Repeated Factors

$$
F(s)=\frac{s+1}{(s+3)^{2}}=\frac{\alpha_{1}}{s+3}+\frac{\alpha_{2}}{(s+3)^{2}}
$$

Multiply out denominators and match "like" powers of s.

$$
\begin{aligned}
& \frac{(s+1)(s+3)^{2}}{(s+3)^{2}}=\frac{\alpha_{1}(s+3)^{2}}{s+3}+\frac{\alpha_{2}(s+3)^{2}}{(s+3)^{2}} \\
& (s+1)=\alpha_{1}(s+3)+\alpha_{2}=s\left(\alpha_{1}\right)+\left(3 \alpha_{1}+\alpha_{2}\right)
\end{aligned}
$$

Therefore, $\alpha_{1}=1$, and $3 \alpha_{1}+\alpha_{2}=1$. This means that $\alpha_{2}=-2$.
So $\quad F(s)=\frac{s+1}{(s+3)^{2}}=\frac{1}{s+3}+\frac{-2}{(s+3)^{2}}$

Inverting

$$
f(t)=e^{-3 t}-2 t e^{-3 t}
$$

Additional Notes

1. Final value theorem (Eq. 3-81)

$$
y(\infty)=\lim _{s \rightarrow 0}[s Y(s)]
$$

2. Initial value theorem (Eq. 3-82)

$$
y(0)=\lim _{s \rightarrow \infty}[s Y(s)]
$$

3. Time delay
(Real Translation Theorem, Eq. 3-96)

$$
G(s)=L\left\{f\left(t-t_{0}\right) S\left(t-t_{0}\right)\right\}=e^{-s t_{0}} F(s)
$$

More Practice

Practice: Write the Laplace form of a function that does the doublet test,
(a) changing at $t=0$ to a value of 2 ,
(b) changing to a value of -2 at $t=3 \mathrm{~min}$, and
(c) changing to a value of 0 at $t=6 \mathrm{~min}$.

$$
\frac{2}{s}+e^{-3 s}\left(\frac{-4}{s}\right)+e^{-6 s}\left(\frac{2}{s}\right)
$$

More Practice

Write the time domain form of the following Laplace function and sketch it:

$$
\begin{gathered}
e^{-3 s} \frac{3}{s^{2}}-e^{-6 s} \frac{6}{s^{2}}+e^{-9 s} \frac{3}{s^{2}} \\
3(t-3)[S(t-3)]-6(t-6)[S(t-6)]+3(t-9)[S(t-9)]
\end{gathered}
$$

More Practice

Determine the final value of the following function:

$$
\begin{array}{ll}
\text { @ } & F(s)=\frac{12 s^{2}+22 s+6}{s(s+1)(s+2)} \\
\frac{F(s=0)}{}=\frac{s\left(12 s^{2}+22 s+6\right)}{s(s+1)(s+2)}=\frac{(6)}{(1)(2)}=3
\end{array}
$$

Extra

Example 3.1

Solve the ODE,

$$
\begin{equation*}
5 \frac{d y}{d t}+4 y=2 \quad y(0)=1 \tag{3-26}
\end{equation*}
$$

First, take L of both sides of (3-26),

$$
5(s Y(s)-1)+4 Y(s)=\frac{2}{s}
$$

Rearrange,

$$
\begin{equation*}
Y(s)=\frac{5 s+2}{s(5 s+4)} \tag{3-34}
\end{equation*}
$$

Take L^{-1},

$$
y(t)=\mathrm{L}^{-1}\left[\frac{5 s+2}{s(5 s+4)}\right]
$$

From Table 3.1, How do you get (3-37)?

$$
\begin{equation*}
y(t)=0.5+0.5 e^{-0.8 t} \tag{3-37}
\end{equation*}
$$

Partial Fraction Expansion

$$
\begin{gathered}
y(t)=\mathrm{L}^{-1}\left[\frac{5 s+2}{s(5 s+4)}\right] \\
\frac{5 s+2}{s(5 s+4)}=\frac{s+\frac{2}{5}}{s\left(s+\frac{4}{5}\right)}=\frac{s+0.4}{s(s+0.8)} \\
\frac{s+0.4}{s(s+0.8)}=\frac{s}{s(s+0.8)}+\frac{0.4}{s(s+0.8)}=\frac{1}{(s+0.8)}+\frac{0.4}{s(s+0.8)} \\
L^{-1}\left\{\frac{1}{(s+0.8)}+\frac{0.4}{s(s+0.8)}\right\}=e^{-0.8 t}+0.4\left[\frac{1}{-0.8}\left(e^{-0.8 t}-1\right)\right] \\
\quad=e^{-0.8 t}-0.5\left[\left(e^{-0.8 t}-1\right)\right]=0.5+0.5 e^{-0.8 t} \quad \begin{array}{l}
\substack{(090 \\
b 0=0)}
\end{array}
\end{gathered}
$$

Example 3.2 (continued)

Recall that the ODE, $\dddot{y}++6 \ddot{y}+11 \dot{y}+6 y=1$, with zero initial conditions resulted in the expression

$$
\begin{equation*}
Y(s)=\frac{1}{s\left(s^{3}+6 s^{2}+11 s+6\right)} \tag{3-40}
\end{equation*}
$$

The denominator can be factored as

$$
\begin{equation*}
s\left(s^{3}+6 s^{2}+11 s+6\right)=s(s+1)(s+2)(s+3) \tag{3-50}
\end{equation*}
$$

Note: Normally, numerical techniques are required in order to calculate the roots.

The PFE for (3-40) is

$$
\begin{equation*}
Y(s)=\frac{1}{s(s+1)(s+2)(s+3)}=\frac{\alpha_{1}}{s}+\frac{\alpha_{2}}{s+1}+\frac{\alpha_{3}}{s+2}+\frac{\alpha_{4}}{s+3} \tag{3-51}
\end{equation*}
$$

Solve for coefficients to get

$$
\alpha_{1}=\frac{1}{6}, \quad \alpha_{2}=-\frac{1}{2}, \quad \alpha_{3}=\frac{1}{2}, \quad \alpha_{4}=-\frac{1}{6}
$$

(For example, find α, by multiplying both sides by s and then setting $s=0$.)

Substitute numerical values into (3-51):

$$
Y(s)=\frac{1 / 6}{s}-\frac{1 / 2}{s+1}+\frac{1 / 2}{s+2}+\frac{1 / 6}{s+3}
$$

Take L^{-1} of both sides:

$$
\mathrm{L}^{-1}[Y(s)]=\mathrm{L}^{-1}\left[\frac{1 / 6}{s}\right]-\mathrm{L}^{-1}\left[\frac{1 / 2}{s+1}\right]+\mathrm{L}^{-1}\left[\frac{1 / 2}{s+2}\right]+\mathrm{L}^{-1}\left[\frac{1 / 6}{s+3}\right]
$$

From Table 3.1,

$$
\begin{equation*}
y(t)=\frac{1}{6}-\frac{1}{2} e^{-t}+\frac{1}{2} e^{-2 t}-\frac{1}{6} e^{-3 t} \tag{3-52}
\end{equation*}
$$

Important Properties of Laplace Transforms

1. Final Value Theorem

It can be used to find the steady-state value of a closed loop system (providing that a steady-state value exists.

Statement of FVT:

$$
\lim _{t \rightarrow \infty} y(t)=\underset{s \rightarrow 0}{\lim [s Y(s)]}
$$

providing that the limit exists (is finite) for all $\operatorname{Re}(s) \geq 0$, where $\operatorname{Re}(s)$ denotes the real part of complex variable, s.

Example:

Suppose,

$$
\begin{equation*}
Y(s)=\frac{5 s+2}{s(5 s+4)} \tag{3-34}
\end{equation*}
$$

Then,

$$
y(\infty)=\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0}\left[\frac{5 s+2}{5 s+4}\right]=0.5
$$

