Class 22

Complex Transfer Functions



Road Map for 2@ Order Equations

Step Sinusoidal Other Input
Response Response Functions
(long-time only) -Use partial
/\ (5-63) fractions
Underdamped Critically Overdamped
0<(<1 damped (> 1
(5-51) o= (5-48, 5-49)
(5-50)

Relationship between
OS,P t.and {, T
(pp- 119-120)




What About Higher Order Systems?

30
Gls)=
() 245> +20s* +10s +2

or

A polynomial in the numerator
3()52 +65+7 is called a lead element
G(s)

= 3 2 A polynomial in the denominator
2457 +20s" +10s +2 is called a lag element




Poles and Zeros

 Transfer function can usually be represented as a
ratio of two polynomials in the Laplace variable s
along with a possible delay term:

G(s)= 2 oo

P( S)

where  7z(s)=b s" +b_ s"'+.+bs+b,

_ n n—1
and P(s)=a,s" +a, s"" +.+a,s+a,

Roots of Z(s) = “zeros”
Roots of P(s) = “poles”



Different Forms of G(s)

b,(s—z)(s—2,)..(s-z,) 05

G(s) = a (5= p)s—pa)(s—p.)

SO Z4, 2, ..., Z, are the zeros
and p4, Po, -.-, P, are the poles

Alternatively, in time constant form,

bm(— Zl)(— Zz)...(— zm)(flls + 1)(2‘125 + 1)...(Tlms + 1) 00

Gls)=
Vo)) p ms+)(zys 1) (s 1)
_K(Tlls+1)(les+1)...(flms+1) 0 .
7 (as+ )+ ). (g, +1) n = m to be physically
realizable
so -1/z4, -1/7p, ..., -1/7;, are the zeros

and -1/z4, -1/%,, ..., -1/1, are the poles



» Poles show the stability of the process
» Zeros show some dynamics (lead-lag)
* Plot poles on real vs imaginary axes with “x”

Complex conjugate pair
of poles -- stable but
oscillatory

Imaginary axis

Stable

region

Unstable pole
“ka-boom”

3% a
oscillations X /
Stable pole
Stable pole long tiﬁ]e

very fast
time constant

constant

« Grey area (positive poles)
means unstable behavior

 Distance from origin means

— More oscillations (y
direction)

— Faster response due to
shorter time constant

Real axis (X direction)

» Pole on origin means
Integrating process

* Poles on y axis mean pure
oscillatory behavior with no
exponential damping



What Do Zeros Tell Us?

e Zeros have no effect on system stability.

e Zero in right half plane: may result in an inverse response to a
step change 1n the input

4+ Imaginary axis

Real
o > :> y O """""""""""""""

t

Inverse response

(initially negative)

e Zero in left half plane: may result in “overshoot” during a step
response (see Fig. 6.3).



Example 6.2

For the case of a single zero in an overdamped second-order
transfer function,

K(t,s+1)
(tys+1)(Tos+1)

G(s)= (6-14)

calculate the response to the step input of magnitude M and plot
the results qualitatively.
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Solution

The response of this system to a step change in input 18

y(t)=KM (1+ fa” M /T Tam T2 e‘”"zj (6-15)
T =12 -1
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Note that y(z — o) = KM as expected; hence, the effect of
including the single zero does not change the final value nor does
it change the number or location of the response modes. But the
zero does affect how the response modes (exponential terms) are
weighted in the solution, Eq. 6-15.

A certain amount of mathematical analysis (see Exercises 6.4, 6.5,
and 6.6) will show that there are three types of responses involved
here:

Casea: T,~>T
Caseb: 0O<t,<T

Casec: 71,<0



71 =4
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Time ,
Inverse Response

Flgure 6.3. Step response of an overdamped
second-order system (Eq. 6-14) with a single zero.

See page 134 for examples of inverse response
* Increase of steam to reboiler initially causes frothing/spillage on first trays




Example Problem

30 15 15
G(S): 3 2 — 3 2 = 2
245 +20s* +10s+2 125> +10s>+5s+1  (3s+1)4s* +2s+1)

Put in pole-zero format:
15

3 5+l 4 52+ls+l
3 2 4
Convert to sine-cosine form:

G(s)= 15 _ 15

1 1 1 2
A s+ |4 7+ s+ 1 Iy, 3
( 3j ( 2 4j 12(”3){(”4) +16}

Find poles:
[ 1 3 j [ 1 3 j
(-1/3,0) T T

G(S)=

4’ 4 4’ 4



Now Plot

o All left-hand half

s — Exponential decay
0.3 (good!)
0.2 1 . .
- Ong imaginary
0 conjugate pair
3;_. ! — Oscillatory behavior
-0.3
-0.4 -




Example: Problem 6.1

2
O.7(S + 25+ 2)
G(s) =1 4 3 2
(s S5s" +2s° —4s 6)

Find zeros and poles (use Mathcad) " as oom
0.756 0.583
e -1.083 0.585
- -1.083 -0.585
0.756 -0.583

o Zeros
%51 * :1 1

6 4 2 o 2% < Two poles in unstable area
051 o : :

« Any input or disturbance
=1 action will cause growth
beyond bounds




Polynomial Approximations to %

Wanted: polynomial approximations to

Why: Analysis of transfer functions

Two widely used approximations are:

1. Taylor Series Expansion: 005

2 2 33 4 4
o ey 0 U O (6-34)
21 31 41

The approximation is obtained by truncating after only a few
terms.

2. Padé Approximations:

Many approximations are available. For example, the 1/1

approximation is, I 0 S
e~ 2 (6-35)

1+9S
2




Pade Approximations
theta = 2
20

s
» \
% 10 —— exp(-theta*s)
= A\_ _ - "1/1"Pade
\:I A J " "
S ™) 2/2"Pade
() ‘ O V‘V‘V‘V‘V\{\JV\;\{F\_’_\J_V_\!_\!_V_\;

-2 1 5 1 2

s

Implications for Control.:

e Time delays can be a challenge for control because they involve
a delay of information

 Pade approximation often used when €% is in denominator



Taylor Approximation of Higher-Order
Transfer Functions

Goal: Approximate high-order transfer function models with
lower-order models that have similar dynamic and steady-
state characteristics.

e For small values of s,

e % =1-0,s (6-57)
(use for numerator terms)
e An alternative first-order approximation consists of the transfer
function,
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s 1 1

~ 6-58
eOOS 1+ GOS ( )

(use for denominator terms for non-dominant time constants)




Example 6.4

Consider a transfer function:

K(-0.1s+1)
G(s)= (6-59)
(5s+1)(3s+1)(0.55+1)
L: Derive an approximate first-order-plus-time-delay model,
% —0s
© G(5)=2¢ (6-60)
5 Ts+1

using the Taylor series expansions of Egs. 6-57 and 6-58.




Solution

(a) The dominant time constant (T = 5) 1s retained. Applying
the approximations in (6-57) and (6-38) gives:

—0.1s+1=e 1 (6-61)
(Lo and (numerator)
o

1 _ 1 _

=4 ~ o3 ~ ¢ 0 (6-62)
« 3s+1 0.5s+1
L (denominator terms)
OB Substitution into (6-59) gives the Taylor series

approximation, G (s):

Ke—O.lse—3se—O.5s K€_3'6S

G = = 6-63
rs (5) 5511 S5+ 1 (6-63)




and G(s) can be approximated as:

—2.1s
~ Ke &
G (S ) = (6-64)
6.5s+1
| i I I | | |
© i
dh) 0.8} =
© f: —-—- Taylor Series
_: E 0.4 =
2
O », )
0| 2
0.2 | | ! i | I L

0 5 10 15 g0 - 25 20 25 . %0
Figure 6.10 Comparison of the actual and approximate models for Example 6.4.

Skogestad’s method provides better agreement with the actual
response.




Example:
Parallel Processes

R(s)

1G4 (s)

X(s) — ?% Y(s)

1Gy(s)

Q(s)

G,(s) 1s 15" order
G,(s) is 2" order



Parallel Process (cont.)

Y(s) _ 3
X (s) =G,,0a1(8) =G (5) + G, (s)
Y (s) . K1 n Kz

X(s) s+l 257 +2(T,s5+1

K (25 +2¢rs+1)+ K, (25 +1)
(7,5 + 1)(2'2232 +207,s + 1)

K’ +(K,+2{7,)s+ K, + K,
(Tls + 1)(2'2252 +207,s + 1)

Now put in standard form: Moral:
K'(asz +bs + 1) 2.systems in parallel
— . give lead-lag and
(715 + 1)(72 s°+207,5 + 1) complicated pole-zero form




Homework Hint on Prob 6.7

See online hint, because |
changed the problem a little bit!



