
Class 22

Complex Transfer Functions



Road Map for 2nd Order Equations

Standard Form

Step

Response

Sinusoidal

Response
(long-time only)

(5-63)

Other Input

Functions
-Use partial

fractions

Underdamped

0 < ζ < 1

(5-51)

Critically

damped

ζ = 1

(5-50)

Overdamped

ζ > 1

(5-48, 5-49)

Relationship between

OS, P, tr and ζ, τ
(pp. 119-120)



What About Higher Order Systems?
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Method to describe stability behavior of 

system using simple analysis of transfer 

function

A polynomial in the numerator

is called a lead element

A polynomial in the denominator

is called a lag element



Poles and Zeros

• Transfer function can usually be represented as a 
ratio of two polynomials in the Laplace variable s
along with a possible delay term:  

where

and

Roots of Z(s) = “zeros”

Roots of P(s) = “poles”
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Different Forms of G(s)

so    z1, z2, …, zn are the zeros

and  p1, p2, …, pn are the poles

Alternatively, in time constant form,
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so    -1/τl1, -1/τl2, …, -1/τln are the zeros

and -1/τ1, -1/τ2, …, -1/τn are the poles

n ≥ m to be physically 

realizable



So Who Cares?

• Poles show the stability of the process
• Zeros show some dynamics (lead-lag)

• Plot poles on real vs imaginary axes with “×”

Imaginary axis

Real axisx

Stable pole

long time

constant

x

Stable pole
very fast

time constant

x

x

Complex conjugate pair

of poles -- stable but
oscillatory

x

Unstable pole
“ka-boom”

Unstable

region

Stable

region

oscillations

less

more

• Grey area (positive poles) 
means unstable behavior

• Distance from origin means
– More oscillations (y 

direction)

– Faster response due to 
shorter time constant 
(x direction)

• Pole on origin means 
integrating process

• Poles on y axis mean pure 
oscillatory behavior with no 
exponential damping
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• Zeros have no effect on system stability.

• Zero in right half plane: may result in an inverse response to a 

step change in the input

• Zero in left half plane: may result in “overshoot” during a step 

response (see Fig. 6.3).

o ⇒ y        0

t

Inverse response

(initially negative)

Real 

axis

Imaginary axis

What Do Zeros Tell Us?
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Example 6.2

For the case of a single zero in an overdamped second-order 

transfer function,
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(6-14)
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calculate the response to the step input of magnitude M and plot 

the results qualitatively.

Solution

The response of this system to a step change in input is

( ) 1 2
τ τ τ τ/ τ / τ1 21 (6-15)
τ τ τ τ1 2 2 1

t ta ay t KM e e
 − −− −= + + 

− − 
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Note that                              as expected; hence, the effect of 

including the single zero does not change the final value nor does 

it change the number or location of the response modes. But the 

zero does affect how the response modes (exponential terms) are 

weighted in the solution, Eq. 6-15.

( )y t KM→ ∞ =

A certain amount of mathematical analysis (see Exercises 6.4, 6.5, 

and 6.6) will show that there are three types of responses involved 

here:

Case a:

Case b:

Case c:

1τ τa >

10 τ τa< ≤

τ 0a <
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Inverse Response

See page 134 for examples of inverse response

• Increase of steam to reboiler initially causes frothing/spillage on first trays



Example Problem

Put in pole-zero format:
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Convert to sine-cosine form:

Find poles:
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Now Plot

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0

• All left-hand half

– Exponential decay 

(good!)

• One imaginary 
conjugate pair

– Oscillatory behavior



Example: Problem 6.1
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Find zeros and poles (use Mathcad)

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2

Poles

Zeros
• Two poles in unstable area

• Any input or disturbance 

action will cause growth 

beyond bounds

Poles

-4.345 0.000

0.756 0.583

-1.083 0.585

-1.083 -0.585

0.756 -0.583

Zeros

-1 1

-1 -1
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Wanted: polynomial approximations to 

Why: Analysis of transfer functions
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Two widely used approximations are:

1. Taylor Series Expansion:

2 2 3 3 4 4
θ θ θ θ

1 θ (6-34)
2! 3! 4!

s s s s
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The approximation is obtained by truncating after only a few 

terms.

2. Padé Approximations:

Many approximations are available. For example, the 1/1 

approximation is,

θ

θ
1

2 (6-35)
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Polynomial Approximations to



Pade Approximations
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Implications for Control:

• Time delays can be a challenge for control because they involve 

a delay of information

• Pade approximation often used when e-θs is in denominator



Taylor Approximation of Higher-Order 

Transfer Functions

0
θ

01 θ (6-57)
s

e s
− ≈ −

Goal: Approximate high-order transfer function models with 

lower-order models that have similar dynamic and steady-

state characteristics.

• For small values of s,
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(use for numerator terms)

• An alternative first-order approximation consists of the transfer 

function,

0
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(6-58)
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(use for denominator terms for non-dominant time constants)



Example 6.4

Consider a transfer function:
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Solution

(a) The dominant time constant (τ = 5) is retained. Applying

the approximations in (6-57) and (6-58) gives:
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and G(s) can be approximated as:
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Skogestad’s method provides better agreement with the actual 

response.
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Figure 6.10 Comparison of the actual and approximate models for Example 6.4.



Example:
Parallel Processes

G1(s)

G2(s)

X(s)

R(s)

Q(s)

+

+ Y(s)

G1(s) is 1st order

G2(s) is 2nd order
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Now put in standard form: Moral:

2 systems in parallel

give lead-lag and

complicated pole-zero form

Parallel Process (cont.)



Homework Hint on Prob 6.7

See online hint, because I 

changed the problem a little bit!


