Part a) Using the Species for A and Energy Balance, derive a model of the CSTR response of  $C_a$  and T to changes in the inputs  $C_{a,i}$ ,  $T_{i}$ , and  $T_{c}$ .

```
% Temperature of cooling jacket (K)
Tc = 270
q = 100
                         % Volumetric Flowrate (m^3/sec)
V = 100
                         % Volume of CSTR (m^3)
\rho = 1000
                         % Density of A-B Mixture (kg/m^3)
                         % Heat capacity of A-B Mixture (J/kg-K)
C_p = .239
\Delta H_r = 5e4
                         % Heat of reaction for A->B (J/mol)
E/R = 8750
                         % EoverR = E/R
k0 = 7.2e10
                         % Pre-exponential factor (1/sec)
UA = 5e4
                         % Overall heat transfer coefficient (U=W/m^2-K)
C_{a,i} = 1
                         % Feed Concentration (mol/m^3)
T_i = 350
                         % Feed Temperature (K)
C_a = 0.989
                         % Concentration of A in CSTR (mol/m^3)
T = 296.6
                         % Temperature in CSTR (K)
```

k = k0\*exp(-EoverR/T)rate = k \* Ca





Part c) Put the Model into State Space Form : dx/dt = A \* x + B \* u