Class 31

Stability Analysis

Stability Analysis

- Stability with changing PID tuning
 - What is the range of K_c that gives a stable system?

Techniques for Stability Analysis

- Routh Array
- Root Locus Plot
- Bode Diagram
- Not covered in this lecture
 - Direct substitution
 - Nyquist diagram

Example 11.13 (modified)

Consider a feedback control system that has the open-loop transfer function,

$$G_{OL}(s) = \frac{4K_c}{(s+1)(s+2)(s+3)}$$
(11-108)

Determine the values of K_c that keep the closed loop system response stable.

Part A) What is the denominator of closed loop response (Characteristic Equation)?

Characteristic Equation

The characteristic equation is $1 + G_{OL} = 0$ or

$$(s+1)(s+2)(s+3)+4K_c = 0$$
 (11-109)

Routh Array

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$
 (11-93)

$$a_n > 0$$
 Multiply polynomial by -1 if $a_n < 0$

<u>Advantages</u>

- Quick Stable vs. Unstable
- No calculator / computer required

Disadvantages

- No indication of stability margin
- Polynomial Characteric Equations only, No timedelays

Part B) For example problem, calculate the critical gain, K_{cu}

Routh Array Example

Root Locus Diagrams

- Find characteristic equation
 - Equation is a function of $\rm K_{c}$
- Pick various values of K_c
- Find roots of characteristic equation
- Plot on real vs. imaginary coordinate system

Root Locus Diagrams

- Part c) For example problem, calculate the critical gain, K_{cu}
- The root locus diagram in Fig. 11.27 shows how the three roots of this characteristic equation vary with K_c .
- When K_c = 0, the roots are merely the poles of the open-loop transfer function, -1, -2, and -3.

Figure 11.27 Root locus diagram for third-order system. X denotes an openloop pole. Dots denote locations of the closed-loop poles for different values of K_c . Arrows indicate change of pole locations as K_c increases.

See MATLAB Commands Sheet

Root Locus Diagram - Overshoot

• With $K_c = 1$, Overshoot = 5%

Bode Plot Stability Analysis

- Critical frequency ω_c is ω for which $\phi_{OL}(\omega)$ =-180°
- Amplitude Ratio at Critical Frequency
 - Stable when $AR_{OL}(\omega_c) < 1$
- Decibels to Amplitude Ratio
 - Decibels = G_{dB} = 20 log₁₀(AR)
 - Stability: AR < 1 or G_{dB} < 0
- Gain Margin

$$K_{cu} = \frac{1}{AR_{G}(\omega_{c})} = \frac{1}{10^{\frac{G_{dB}}{20}}}$$

 Part d) For example problem calculate K_{cu} using the Bode diagram.

Bode Plot Stability Analysis

