Cascade Control

What We WIll Learn in This Section

@ The Cascade Control Architecture

® Benefits of a Cascade Strategy

@ Design and Tuning a Cascade Controller
@ Application to a Flash Drum Process

@ Application to a Jacketed Reactor
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Cascade Control

® Architectures for improved disturbance rejection
= Feed Forward
s Cascade

@ Both require additional instrumentation and
engineering time in return for a controller better able
to reject disturbances

@ Neither architecture benefits nor detracts from set
point tracking performance
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Traditional Feedback Loop iIs in the Dashed Circle

— e E—— o,

- — ~ ~
- - inner RN
s — > N
’ Disturbance N
/ \
/ \

/ \ ]
primary / secondary secondary secondary \ primary
(outer) 1 (inner) (inner) (inner) 1 (outer)

SP1 Primgry SP2 Secondary| CO2 Secondary PV2 Primpry| _PV1
ﬂ@" Contrgller Controller —»| FCE P process O Progess >
\ e.g. valve 7
\ /
\ /
\ /
N . . Ve
N inner secondary process variable, PV2 \ 24
N g - 7’
~ -
Copyright © 2007 S - - -
by Control Station, Inc. S N e e - -
All Rights Reserved
outer primary process variable, PV1 \ 4

@ A cascade is comprised of two ordinary PID controllers

@ The inner secondary loop has a traditional feedback structure,
and it is nested inside the outer primary loop
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Nested Loops Work to Protect Outer Primary PV1
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@ Cascade architectures seek to improve the disturbance
rejection performance of PV1
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Early Warning Is Basis for Cascade Success
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@ Success in a cascade design depends on the measurement
and control of an "early warning" process variable PV2
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Cascade Design

@ Characteristics for selecting early warning PV2 include:
s it must be measurable with a sensor

= the same FCE (e.qg., valve) used to manipulate PV1
also manipulates PV2

s the same disturbances that are of concern for PV1 also
disrupt PV2

= PV2 responds before PV1 to disturbances of concern
and to FCE manipulations
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Cascade Design

® A cascade design requires:
= two sensors
= two controllers
= one final control element (FCE)

@ The output of the outer primary controller, rather than going to
a valve, becomes the set point of the inner secondary controller

@ Because of this nested architecture:

Success requires that
the settling time of the inner secondary inner loop
Is significantly faster
than that of the outer primary outer loop
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Example: Flash Drum Process
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@ Level must never fall so low that vapor is sent down liquid
drain nor rise so high that liquid enters the vapor line
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Flash Drum — Single Loop Architecture

@ Design Objective - control liquid level in the drum

@ Choose valve position as manipulated variable
= If level too high, open valve
= If level too low, close valve

@ Concern is that drain flow rate changes as a function of
= valve position
= hydrostatic head (height of the liquid)
s pressure of vapor pushing down on liquid (a disturbance)
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@ If pressure of vapor phase is constant, then as drain valve
opens and closes, the liquid drain flow rate increases and
decreases in predictable fashion

@ Single loop architecture would then be satisfactory

Copyright © 2007 Control Station, Inc. All Rights Reserved 10 control station




Flash Drum — Single Loop Architecture

® Suppose the vapor phase pressure starts decreasing:

= This disturbance causes pressure pushing down on the liquid
interface to decrease

= If the valve position were to remain constant, the liquid drain
flow rate would similarly decrease

= Consider that if a pressure decrease occurs quickly enough,
the controller can be opening the valve yet the liquid drain
flow rate can continue to decrease
This contradictory outcome can confound the controller

@ Observation - It is liquid drain flow rate, not valve position, that
must be adjusted for high performance disturbance rejection
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Solution: Flash Drum Cascade Architecture
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@ Two controllers (level control; drain flow rate control)
@ Two sensors (measuring liquid level; liquid drain flow rate)
@ One final control element (valve in the liquid drain stream)
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A Cascade Control Solution

@ Liquid level is the outer primary PV1 and controlling it remains
the main objective

@ For inner secondary PV2 choose liquid drain flow rate:
= liquid drain flow rate is measurable with a sensor

= the same valve used to manipulate liquid level (PV1) also
manipulates the liquid drain flow rate (PV2)

= changes in vapor phase pressure that disturb PV1 also
impact PV2

= drain flow rate is inside the liquid level in that it responds
well before liquid level to changes in valve position and
changes in vapor phase pressure
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Flash Drum Cascade Architecture
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@ Liquid level control (main objective) is outer primary loop
@ Liquid drain flow rate is inner secondary loop
@ Output of primary controller is set point of secondary controller

@ Flow control dynamics are much faster than level control
dynamics so this is consistent with design criteria
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Flash Drum Cascade Architecture

e If liquid level is too high, the primary level controller now
calls for an increased liquid drain flow rate rather than

simply an increase in valve opening

@ The flow controller then decides whether this means
opening or closing the valve and by how much

@ Thus, a vapor phase pressure disturbance gets addressed
quickly by the secondary flow controller and this improves

disturbance rejection performance
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Tuning a Cascade Implementation

@ Cascade loop tuning uses our existing skKills:
= Begin with both controllers in manual mode

s Select P-Only controller for the inner secondary loop (integral
action increases settling time and offset is rarely an issue for
the secondary process variable)

= Tune the secondary P-Only controller for set point tracking
and test it to ensure satisfactory performance

s Leave secondary controller in automatic; it is now part of the
primary process. Select a Pl or PID controller for the primary
loop, tune it for disturbance rejection and test it

= With both controllers in automatic, tuning is complete
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Exploring the Jacketed Reactor Process
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@ Well mixed vessel with exothermic (heat producing) reaction

@ Residence time is constant so conversion of feed to product can
be inferred from the reactor exit stream temperature

@ Objective 2 maintain constant measured reactor exit stream
temperature in spite of jacket inlet temperature disturbances
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The Jacketed Reactor

@ To control reactor exit stream temperature, the vessel is
enclosed with a cooling jacket

e If the exit stream temperature (and thus conversion) is high,
the controller opens a valve to increase cooling liquid flow rate

@ This cools the reactor, slowing the heat producing reaction

@ The disturbance variable of concern is the cooling jacket inlet
temperature
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Disturbances and the Jacketed Reactor

@ Consider scenario where the temperature of the cooling liquid
entering the jacket fluctuates, changing the ability of the
cooling jacket to remove heat

@ If the cooling liquid temperature becomes colder just as the
reactor temperature starts to fall, the controller can lower the
cooling liquid flow rate yet be removing more heat than before

@ Again, a contradictory result can confound the controller and
Impact disturbance rejection performance
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Cascade Architecture for the Jacketed Reactor
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@ Outer primary variable remains reactor exit stream temperature
@ Inner secondary variable is cooling jacket outlet temperature
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The Reactor Cascade Architecture

@ Cooling jacket outlet temp is a proper secondary variable
= it iIs measurable with a sensor

= valve used to manipulate reactor exit stream temperature
(PV1) also manipulates cooling jacket outlet temp (PV2)

= changes in cooling jacket inlet temperature that disturb
reactor exit stream temp also disturb the cooling jacket
outlet temp

= the cooling jacket outlet temp is inside the reactor exit temp
In that it responds first to changes in valve position and
changes in the cooling jacket inlet temperature
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The Reactor Cascade Architecture
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@ Outer primary process (PV1) is reactor exit temperature
= Measured variable is reactor exit stream temperature

= controller output is set point of secondary controller

@ Inner secondary process (PV2) is the cooling jacket
= Measured variable is the cooling jacket outlet temperature

= Mmanipulated variable is the cooling jacket liquid flow rate
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Process: Single Loop Jacketed Reactor Cont.: PID ( P= DA, 1= ARW, D= off, F = off)
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Disturbance Rejection Comparison

Disturbance Rejection Performance
of Single Loop PI Controller

Time (mins)

Tuning: Gain = -3.0, Reset Time = 1.71, Sample Time = 1.0
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Disturbance Rejection Performance
of Cascade Architecture

Process: Cascade Jacketed Reactor Pri: PID (P=RA, I= ARW, D= off, F = off)
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Tuning: Gain = -5.8, Sample Time = 1.0
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Set Point Tracking Comparison

Set Point Tracking Performance
Under PI Control

Set Point Tracking Performance Under

Cascade Control

Pri: PID ( P= RA, I= ARW, D= off, F = off)

Sec: PID ( P= DA, I= off, D= off, F = off)
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@ Cascade does not provide benefit in tracking set point changes
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