Controller Interaction

Lecture 40

ChE436 - Process Dynamic and Control

Derive a Distillation Column Model

- Groups of 2
- Two Components
- Constant Relative Volatility
- Constant Tray Molar Holdup
- Liquid Feed at the Bubble Point
- 30 Trays, Reboiler, and Condenser
- Manipulated Variables
 - RR Reflux Ratio
 - FBOT Fraction of Feed Leaving as Bottoms Product
- Controlled Variables
 - x[1] Composition for Overhead Product
 - x[32] Compositions of Bottoms

Relative Gain Array (RGA) - pg. 348 of SEMD

- Helps Guide Decision of MV-CV pairing
- Example Distillation Column

AP Monitor			CV(1)	CV(2)		SV(1)	SV(2)	SV(3)	SV(4)	SV(5)	SV(6)	SV(7)	SV(8)
	Sensitivitie	s	ss.x[1]	ss.x[32]	s	:.x[2]	ss.x[5]	ss.x[10]	ss.x[15]	ss.x[20]	ss.x[25]	ss.x[30]	ss.x[31]
FV(1)	ss.feed		-4.204E-09	4.204E-09	-5	.313E-09	-5.383E-09	-2.321E-09	8.049E-09	5.356E-09	6.675E-09	5.061E-09	4.792E-09
FV(2)	ss.x_feed		0.880362	1.11964	1	30545	2.42762	2.64995	1.80586	2.16519	3.25674	2.00723	1.55214
FV(3)	ss.alpha		0.446683	-0.446683	0	606380	0.889874	0.565205	0.095437	-0.178455	-0.702162	-0.689056	-0.574441
FV(4)	ss.atray		0.00	0.00	0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FV(5)	ss.acond		0.00	0.00	0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FV(6)	ss.areb		0.00	0.00	0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MV(1)	ss.rr		0.068707	-0.068707	0	101883	0.170145	0.121322	0.019434	-0.050178	-0.152264	-0.118547	-0.093852
MV(2)	ss.fbot		0.314140	1.42754	9	465825	0.866247	0.945584	0.644385	1.43757	3.39092	2.48516	1.95664

$$K_{11} = 0.069$$

•
$$K_{11} = 0.069$$
 $\lambda_{11} = \lambda_{22} = \frac{1}{1 - \frac{K_{12}K_{21}}{K_{11}K_{22}}}$
• $K_{12} = 0.314$

$$\bullet$$
 K₁₂=0.314

•
$$K_{21} = -0.069$$
 $\lambda_{12} = \lambda_{21} = 1 - \lambda_{11}$

$$\bullet K_{22} = 1.428$$

$$\Lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} 0.82 & 0.18 \\ 0.18 & 0.82 \end{bmatrix}$$

Pick pairings with positive values closest to 1.0.

RGA Tool to Select Best Control Option

a. Indirect control, composition regulates boilup

b. Indirect control, composition regulates reflux

Distillation Column is a 2 x 2 Multivariable Challenge

Results of Open-Loop Step Tests on Top and Bottom

Figure 20.4 - Open loop step tests on the distillation column's top and bottom controller

Control Loop Interaction

Figure 20.2 - Block diagram of top and bottom distillation control loops with "cross loop" interaction

Using PI Controllers for Top and Bottom

Set point change from 92 to 94% benzene in top

Figure 20.8 - Top and bottom loop fight each other, thus degrading set point tracking performance of top loop

Solution.... Decouplers or Multi-variable Control

Decouplers

- Act kind of like a feed-forward controller
- Model what the interaction will be, and compensate
 - Treat the bottom composition as a disturbance with a feedforward loop to the top controller
 - Treat the top composition as a disturbance with a feedforward loop to the bottom controller
- Remember that a feedforward controller has the form:
 - $G_{FF} = -G_{dist}/G_{process}$
- So the decoupler transfer functions become:
 - $D_{\text{top decoupler}} = -G_{\text{TB}}(s)/G_{\text{TT}}(s)$

G_{TB} is response of top composition to change in bottoms controller, etc.

 $D_{\text{bottom decoupler}} = -G_{\text{BT}}(s)/G_{\text{BB}}(s)$

Decoupling Structure

Figure 20.3 - Block diagram of top and bottom distillation control loops with cross loop interaction and decouplers

Decouplers are Feed Forward Controllers

- A decoupler is comprised of a process model and a cross-loop disturbance model:
 - The cross-loop disturbance model receives the cross-loop controller signal and predicts an "impact profile," or when and by how much the process variable will be impacted
 - Given this predicted sequence of disruption, the process model then back calculates a series of control actions that exactly counteract the cross-loop disturbance as it arrives so the measured process variable remains constant at set point
- A new sensor is not needed because the cross-loop controller signal is readily available for use by the decoupler
- Developing and programming the dynamic process and cross-loop disturbance models is required for implementation

Tuning Procedure

- Get process responses to top and bottom controllers in open-loop mode
 - Do a <u>pulse</u>, not a doublet, to get highest K_p
 (and hence lowest K_c) for top and for bottom
 - Fit FOPDT models to:
 - 1. G_{TT} (top response to change in top controller output)
 - 2. G_{BB} (bottom response to change in bottom controller output)
 - G_{TR} (top response to change in bottom controller output)
 - 4. G_{BT} (bottom response to change in top controller output)
- Get PI Controller parameters from IMC correlation
- Put in FOPDT parameters for G_{TT}, G_{BB}, G_{TB}, and G_{BT} into decouplers
 - G_{BT} goes into bottom decoupler

Improved Performance with Decouplers

Figure 20.11 - Improved set point tracking capability of top loop and reduced interaction with bottom loop when both are under PI control with decouplers

Subtle Problem

- $K_{P.BB} = -0.22 \% / \%$
- $K_{D.BT} = 0.24 \% / \%$
- If the disturbance gain is greater than the process gain, things don't work well!
- Solution:
 - Set $|K_{D,BT}| = |K_{P,BB}|$, or $K_{D,BT} = 0.22 \%$ /%

Final Result

Figure 20.12 - Decoupled loops do not chatter with slight adjustment to one model parameter

Conclusion

- With just 2 controllers, controller interaction was significant!!
 - Decouplers used, but somewhat complicated
- Imagine what will happen with multiple controllers!

Opportunity for Multi-variable control!

