ChE436 - Process Control
Final Exam Review Sheet

Vocabulary
e Process Variable (PV)

Set Point (SP)

Controller Output (OP)
Manipulated Variable (MV)
Disturbances (D)

Tests to obtain empirical models
o Step test
Impulse test
Doublet test
Pseudo-random binary sequence (PRBS)
etc...

O O O O

e Valves
o Linear
o Equal Percentage
o Quick Opening

Valve Design Logic Diagram
Goal: Control g by changing [

1. SAFETY
Fail-open or Fail-closed
¥
2. Calculate Ap, required
(may be a functionofg)
¥
‘ 3. Specify design flowrate (g) ‘
I
4. Does Ap, change much
With changesing?

Equal percentage valve s m‘ Linear valve
f()=R-,R~2510 50 fih=1
Ny
5. Calculate C,
q=C, f() (Ap, /8.G)0*
a. Ap, may change with g
b. Hopefully Ap,/ Ap,=1/4to 1/3

6. Plot g vs. [ to check linearity of combined system

e Architectures for improved disturbance rejection
o Feed Forward
o Cascade

Concepts
e Linear vs. Nonlinear Systems

e For First Order Systems
o Gain
o Time Constant
o Dead-Time
e For Second Order Systems



o Rise Time
o Settling Time
o Damping Ratio
o Peak Time
e To obtain good data for tuning, the controller output must force the process variable to
move at least 10 times the noise band (signal to noise ratio >= 10)
e PID Controller Options
o P-only
m Accelerates the response of controlled process
m Produces offset except for integrating (1/s) processes

o PI

m  Most commonly used in industrial practice

m Eliminates offset

m Usually higher maximum deviations than P-only

m Poor tuning leads to sluggish, long oscillating responses

m Increased gain may lead to larger oscillations and instability
o PID

m Introduces stabilizing effect on closed-loop response
m Exacerbates noise
m May cause additional wear on valves, etc.

e Partial Fractions

Definitions
1. Process Gain
P Steady State Change mn the Measure dProcess\V anable, Ay (t)
P =

Steady State Change m the Controller Output, fa(t)
2. Degrees of Freedom (DOF)
N DoF — N Variahles N Egquations
3. Laplace Transform
N T (7 #1405t 2
F(s)=L[f(]= jo f(t)e tdr

a. Laplace Transform of a constant

y o a _
L{(I}ZJ‘ aetdr=-"e
. 0 S

=]
[ a 3 a
= (j)_‘ _Z =
(N N

0

b. Laplace Transform of a derivative
L [i}z sF(s)—f(0)
dt ) )

c. Note: Complete Laplace Transform Table will be Attached
d. Note: Laplace Transform Table also available on pg. 42-43 of SEMD

7. Characteristic Equation
e 1+G OL=0
e One positive root (real part) indicates an unstable system
e Imaginary roots indicates oscillations in response

—b+~b* —4dac

. . il
Quadratic formula to determine roots =



e Example:
[2 +6i'| Oscillatory, diverges
| 2-06i | Oscillatory, diverges

| -1 |N0 oscillations, converges

| -3 No oscillations, converges
L J No oscillations, converges

Overall: Oscillatory, diverges

8. Dead-time Approximations
a) Taylor Series Approximation

e M~ 1-Bys
(’._BUS = 1 A2 1
.{_’.BUS 1+ 805
b) Pade Approximation
&)
J
o %5 g
1+—s

¢) Skogestad’s method for approximating higher order systems with FOPDT
i) Largest time constant becomes tau_p
ii) Second largest time constant is split between theta_p and tau_p
i) Other time constants lumped into theta_p

Transient balance equations

[ amount af 5 7 [ ameountaf 5 7
[acommlation af & [ fow af & 1 [ fAow af & ] |generated within | | sonsumead withn |
|_ within a system J= |_i.nt|:- the .ul.s!st_ |_Dut af the .g}l.srst_'_l_ the systeam J _ |_ the system J
Hme periad Hme periad nme period nme period Hme period
Accumulation=In - Out + Generation - Consumption
Overall Mass Balance
dm dlpl : :
_dlor) _ S - Y,
i i
it it i=infaf J=ouflaf

Species Balance for Each Component
dn, dicgV)

= Sca..— > cC.q:+FF
i ALh Af A
dt dt i=inlet Jj= OMIEE‘SJ J
Energy Balance
dl ol (T - T

CAL-T) - 2wl (T, -T)+C+W,

iinler Joutler

Forms of basic transfer functions




Transfer functions in parallel

Hy(=)
™ Gyi=)

L Y(s) = Xy(S) Gy(S) + Xy(s) Gofs)

Hal2)
— | GalE) —

Transfer functions in series

X4(s) ¥a(s) i)
— G(s) = Gzl =

Y(s) = Xa(s) Gafs)
X3(s) = X4(s) Ga(s)
So Y(s) = X4(s)Gu(s) Gals)

First Order Systems

ox ,
7, i X+ K, u(r-60,)

T, = Process tume constant

Kp = Process Gain

0, = Process dead - time
Why is tau = 63.2% to steady-state?

t—=—y+Ku drop the time - delayfrom FOPDT equation

[
Y (s)—v(0)=-Y(s)+ KU(s) LaPlace Transtorm (pg.42 of SEMD)
F(s) _
U(s) w+1

Rearrange with y(0) = 0 to obtain Transfer Function

Y(s5)= 1 ‘ K ‘ U(s) = 1/s (step function)
sies+1)

£

V() = A‘ l—e

Inverse LaPlace Transform (pg42 of SEMD)

J

()= Kll—e)= K(0632) Att=¢:

e t=1tau=0.63
e t=2tau=0.86
e t=3tau=0.95
e t=4tau=0.98
e t=5tau=0.9933

Graphical method for obtaining FOPDT model



Find 6,

Findy.,

Find AYax

Find yo 632

Find tg g3,

Find 1,

7. Find K, = Aypa,/ Au

L

Can also obtain FOPDT from:
e Least squares estimation of Kp, tau_p, theta p

e Linearization of first principles model

Second Order Systems

Gls)=

K
T+ 20+

K = Gain

Overdamped

Two distinet real

roots

1 = Natural Period of Oscillation
£ = Damping Factor (zeta)

Critically
Damped

Two equal real roots

Underdamped

Two complex
conjugate roots

Overdamped Sluggish, no oscillations
Eq. 5-48 or 5-49

Critically damped Faster than overdamped, no
Eq. 5-50 oscillation

Underdamped Fast, oscillations occur
Egq. 5-51

1.

Rise Times: £, is the time the process output takes to first
reach the new steadv-state value.

Time to First Peak: 7, is the time required for the
output to reach its first maximum value.

Settling Time: 7, is defined as the time required for the
process output to reach and remain inside a band whose
width is equal to +5% of the total change in y. The term
95% response time sometimesis used to refer to this
case. Also, values of £1% sometimes are used.

Overshoot: 05=a/b (% overshootis 100a/d).

Decay Ratio: DR =c/a (where ¢ is the height of the
second peak).

Period of Oscillation: P is the ime between two
successive peaks or two successive valleys of the
response.

1.05b_

T T 0,95




Standard Form

Step Sinusoidal
Response Response

Other Input
Functions
-Use partial
fractions

(long-time only)
/‘% (5-63)

Underdamped Critically Overdamped
0<¢<1 damped £>1
(5-51) £=1 (5-48, 5-49)
| (5-50)
Relationship between
OS.P.tand &, T
(pp- 119-120)

Second order plus dead-time (overdamped system)

a
’;fz" LY =Kpult-6,)

d*y(
TrTr #2() +(Tp + )

Proportional Integral Derivative (PID) Controllers

Controller in Time Domain (Derivative on Measurement)

- ~PT "
OP =0P,, +K e(t)+ A [ehdr-K 7, Q
7, ot

where:

oP = controller output signal (alsoseen as CO in PPC)

OPhpias = controller bias or null value

PV = measured process variable

SP = set point

e(t) = controller error = SP — PV

Kc = controller gain (atuning parameter)

Tr = controller reset time (a tuning parameter)

T = controller derivative action (a tuning parameter)

Controller in Laplace Domain (Derivative on Error)

d { S;) =K, {H L+ID.3}
E(s) T;s

PID Controller Tuning




PID Tuning Guide
Beesgin by fifting a first order phoe dead ties (FOPDT) dynasie model (o process dada. “Process™ is defined to inchude all dynamie
information from the oupu s3gnal of the cortroller thoough the measured response sial of the process vanishbe
Generate process dala by foreing the measured process vanable with a change in the controller outpna sigeal. For sccurde mequlis:
- ik process must begin al steadhy state; T first date point pecordsd to file reost squal that stesdy state value
- the clafa collection sample rabe shoukdbe ten times per bizne constant or flster (T <000 ;)
= the controller outpi should fores the messred puocess varishle bo move o st teb times the moies band

Use Dvsign Tools to fil a FOPDT dynamic mode] to the process data set. & FOPDT model has the foom:

g s
Time Domain: t @) + i) =Epuli- 6p) Laplace Domain: E=M
df Uiz spa+l
wher: I =  messured process varhle signal alao:
wif) = controller outpid signal Kp = controller pain; units of efu'yin
Ep = process gun, undts of p(fuh Ty = controller reset time, urdts of time
Ty = processtime constant, anats of tine Ty = condmoller derrratnve e, units of fome
Gp = process desd time; umits of tane o = dertvattvs filter constant; unitless

Valuesof Kp, Tp and & 5 that describe the dyrasmic behavior of your process are ivportant becaagss:
» they are used in correlations (Bsted below) to compate initial PID controller tuning valoes I, €, Tp and o
- the sagn of K mcdicates the action of the controller {(+£, — meverse acting, - K- — dimct scting)
- the size of 15 indicates the maxiroam desirdsle loop sarple time (b sure sample tine T £ 0.1 14)
- ke matio & p F1 p Incicates whether a Smuth predictor would show benefit (useful when & 5 frp >0.T)
- ke o] ikself & used in fred fopward, Seuth predictor, decoupling and other model-based controllees

These comelations provide & dading point S tuzang, Fonal twarg mquares cnbine teal and ermr. “Best™ bunang & defized by wou and
your knowledge of the capabilties of the picess, desies of maragetent, prale of production, atd mpest on other procssse.

IMC {lambda) Tuning "II':::is an rl;.l;Iin
Standard Thurang: T the lanprof Oltp or 088 5

P-Only IMC exdists
Conservtive Taning: 1, isthe lugerof 05t p or 408
Kc T T P
» 00 1219
PO — (Bt -
ny a (8 pfrp)
P TR -
Ep (Bp+sg)
PiDIdeal . [Z2*07%% £p40.58 5 tpfp
Kplec+038p Itp+8p
1
PID Interact - . 05
" rp[rcwﬁep] g #
PID Ideal wifiler p+038,p tp#0.50, tplp tolep+0585)
Kpl to+8p Ltp+8p tpltpep)
PID Interacting whier . 056 e
£p CIH:"P F # To+8p

Linearization and deviation variables
Procedure for obtaining transfer function from first principles (material and energy balances)

Derive — Linearize = —— Laplace —— Input —— Solve
(Deviation Variables) Function

Linearization
f(x,v) = x2 + y2 + 2

F (63 = 01X i, F i) + d FIX gVt [1X— %) + d FIX i ¥ tin! [V~ ¥ tin)
 fin 95 fin



Deviation Variables
:i"j =1r—
¢’ = Deviation Variable
r = Original Variable
¥ = Nominal Value

Block diagram algebra

e Inner Loop First with Shortcut Method (Y1/E = Direct / (1+Loop))

D, D,
L\
Yep E E 1 Y
— K G {?‘ Ge 7 Gy [ rl Go Gs

Ym

F)

¥, G- direct GGG,
E % l+loop 1+G,,G,G,
e Overall Transfer Function with G_IL transfer function and Shortcut Method
Y
Yo E, 1 Y

— Km Gy G, ”@_‘ G;

Y

I K,G.G.G,
Y. 1+G,G,G,G,

P

Transfer functions

Initial and final values from transfer functions

e Final Value Theorem



y(eo)=lim, [s¥(s)

e [nitial Value Theorem
=lim__ [ﬂ*}

° Controller Offset

offset =lm (s(I, ()= T (5))

e Gain
K, =limG(s)

s—+{)

Write input function in Laplace coordinates from graph in time coordinates

e Common Functions

Step : M (5-6)
uls)=
s
Ramp . a (5-8)
uls)=—
s
Rectangular pulse u(s) h (l o S) (5-11)
s
Triangular pulse ( ) 2 (1= 2e /2 L oot \‘ (5-13)
uls )= 5
I\ A )
Sine wave Aw (5-15)
u(s) =
st ot
Impulse u(s)=a p. 76

e Time Delay (function becomes non-zero after theta time)

In time domain:

+ Replace t with (1-6) and multiply by S(t-0)

flt=0)-S(-0)

In Laplace domain
« Multiply by e

e *F(s)

Stability analysis (Routh, Direct Substitution, Root Locus, Bode Plot)

e Routh Array




s+ g 5"V b astag = 0 (11-93)

a, = 0 Multiply polynomial by -1 1f ap=<i0

Row
1 iy 3 it
2 ay-1 | @y-3 Gy
3 b[ b?_ b"
4 a1 e e
\ ' 1 z —— Stableifleading
T 1 . "
edge is positive
by = ‘—'""'““;2'_”""*-‘- (11-94)
by m A T GnnS (11-95)
-1
| Pags —apaby
ey m » (11-96)
biy s =y b
o = oI (11-97)
Direct Substitution

o Substitute s=jw

o Find wc and Kcu that make real and imaginary parts equal to zero
o May need Euler’s Identity for Time Delays

—Jead

& = cosl @81 — Fsint @)

Root Locus - Closed Looop Stable for Poles in Left-Hand Plane

part

Bode Plot Analysis



« Critical frequency o, is o for which ¢y, (©)=-180°
+ Amplitude Ratio at Critical Frequency

— Stablewhen AR (o)< 1
» Decibels to Amplitude Ratio

— Decibels = G5 = 20 log,,(AR)

— Stability: AR <1orGy <0
+ Gain Margin

1 1

* T arem) %

Bode Diagram

a0k

Madrituds (dB)
&
2
T

a0k

-100F

System: G_CL
Freguency (radis) 3,35 —r

- Magnitue (e8); -23.1
20t -

-120
a

K

Phass (deq)

180

System: G_CL

Frequency (racdfs] 331
o0l ... Phase(deo) 180

X'(s)
—

[fr?cﬁn]

1w 10! 10°
Freguency (rad/s)
Get transfer function for each piece of equipment
Xi(s) K,
[ mass s+ 1
fraction
Xips) Xipls) Els) P Pis) [ k, | w
m:is En {:&] : [m:] K""(l +-‘-"!J§) I (:; K : rl,sil 2(8)’ Kfl y
i i T: ’
[iracton = [psi] tkg/min] | 728 X0
[fraction]
Xils)
[mA] K
Standard Block Diagram Form
D
G
d Yd
Yo ¥ E p P, U Y, Y
Gp =

Cascade Control




requires an

inner P .y
distr, 02 | prrer early warning
Disturbanice variable
primary secondary secondary secondary primary
{outer) {inrer) (inrer) (inner) (outer)
=51 Frimary SP2 secendary] ©02 Seoondary_.@ PY2 [primary| PV1
> G_Q P Sortroller primary Confroller P valve Process " |Process v
A
{oLter)
col
inner secondary process variable, PY2 v
Copyright © 2007
by C_Dr‘ltrDI Station, Inc.
Al Rights Reserved outer primary process variable, Py 1 v

Feedforward Control

1. Write an algebraic equation for the block

diagram
Y(s) = D(s)-Gy(s) + U(s)-G(s)

2. If Y(s) is to be unaffected by D(s), then

we want Y(s) =0
3. Solve for U(s) in terms of D(s)
U(s) = [-Gy(s)/G,(s)I-D(s)

S0 Gy = -Gy(s)/Gy(s)
D

o ey 0 T I—

U
JE— Gp

Course Overview




Big Picture

| Block Diagrams & Equipment|

Control Station
-Terminology
-PID controller

Mass & Energy Balances |

|
Math Review

= Laplace transforms
= Partial fractions

1

Transfer functions

Higher Order

Systems (5.4)| =
3 Other
ontral Algontl Correlations

Block Diagra (IMC, ITAE)
A
Stability i Feed Forward

(Ch. 11) 1. Get Dynamic Constants Cascade
2. Tune Controller




