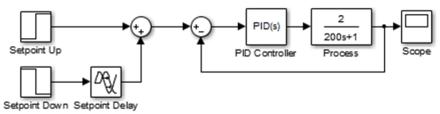
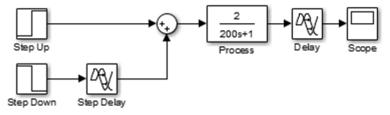
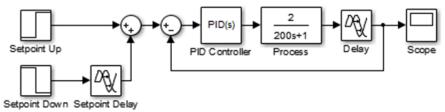

Purpose: Cause of Oscillations in Control Systems


Use a process transfer function in Simulink with $K_p = 2$, $\tau_p = 200$, and $\theta_p = 0$

- 1. Zero dead time case
 - A. Predict the behavior for making a step change in manual mode from 0 to 10 (and back). Then implement it in Simulink with a step input to a transfer function $K_p / (\tau_p s + 1)$


Explain what happened (offset? oscillations? etc.)

B. Predict the behavior for using a P-only controller on this system with $K_c = 2$. Then implement the same 0 to 10 (and back) change but in automatic mode (closed-loop) in Simulink and explain what happened.



What happens with increased K_c in terms of offset and oscillation?

- C. Set the controller to PI control, with the controller gain from part B above. Set the reset time (τ_I) as follows and explain what happens and why.
 - a. $\tau_I = 200$ b. $\tau_I = 100$ c. $\tau_I = 10$
- 2. Add dead time ($\theta_p = 100$) in Simulink as a transport delay.
 - A. Repeat part 1A using this dead time and explain what happens and why.

B. Using P-only control, change the controller gain to (a) $K_c = 2$ and (b) $K_c = 0.5$. Explain the results.

- C. Using PI control, set $\tau_I = 200$ and explain the results.
- 3. Summary Questions
 - A. Based on the observations in manual mode, is the process stable or unstable
 - B. What is the effect of dead time on the control system?
 - C. If the process is stable, why can the control system make it unstable?