Dynamic Optimization

minimize
$$J(x, y, p)$$

subject to $0 = f\left(\frac{dx}{dt}, x, y, p\right)$
 $0 \le g\left(\frac{dx}{dt}, x, y, p\right)$

Dr. John Hedengren

Dynamic Optimization

Courtesy NOV IntelliServ

Course Overview

- Lecture Content, Tutorial Videos, Source Files
 - http://apmonitor.com/do
- Main Topics
 - Dynamic Modeling
 - Dynamic Data
 - Moving Horizon Estimation
 - Model Predictive Control
- Theory and Applications
 - Numerical methods
 - Standard form for dynamic optimization
 - Large-scale, gradient based methods
 - Engineering applications
 - Chemical, Civil, Electrical, Mechanical, Petroleum

Overview of Methods

- Part I: Dynamic Modeling
 - Empirical
 - Fundamental
- Part II: Dynamic Estimation
- Part III: Dynamic Control

minimize
$$J(x, y, p)$$

subject to $0 = f\left(\frac{dx}{dt}, x, y, p\right)$
 $0 \le g\left(\frac{dx}{dt}, x, y, p\right)$

$$\begin{array}{c}
\text{Input } (p) \\
\text{System } (x)
\end{array}$$

Applications

- Dynamic Modeling
 - Model building tutorials
 - Large-scale and complex systems
- Dynamic Estimation
 - Bias Update, Kalman Filter, Moving Horizon Estimation
- Dynamic Control
 - PID, Linear Quadratic Regulator, Model Predictive Control
- Hands-on Arduino Application
- Launch-pad for individual or group projects