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1 Introduction

The inverted pendulum is a canonical control problem that has merited much attention

in classical system dynamics literature due to its highly unstable equilibrium point and

relatively simple, nonlinear model. The problem consists of a rod of length L1 and mass m1

attached to a cart of mass m0. The cart is free to slide along a frictionless rail. The controller

outputs a desired force exerted horizontally on the cart and the objective is to successfully

balance the inverted pendulum in its vertical position while regulating the position of the

cart to a set location. The double inverted pendulum is an extension of this problem, with

a second rod of mass m2 and length L2 attached to the end of the first pendulum. The

system is shown in figure 1. Despite it’s relatively simple model, the inverted pendulum is

an inherently unstable system and sophisticated control designs must be carefully applied to

successfully balance the pendula in its upright position.



Figure 1: Nonlinear MPC applied to a double inverted pendulum system.

2 Background

As the inverted pendulum continues to provide a benchmark test to many nonlinear control

strategies, the theory behind the derivation of its model has been adequately explored in

many references. In the development of the model and control used in this paper, two

particular articles proved most useful [1], [2].

Jadlovska et. al. in [1] uses the Inverted Pendula Model Equation Derivator (a MATLAB

application) to efficiently generate a model of the double inverted pendulum system. This

application uses a generalization of Lagrangian dynamics (applied to n-link systems) that

automatically produces models for a user-chosen type of system.

This work also demonstrates the effectiveness of several matlab applications in applying

linear state feedback control to the inverted pendula system. It also highlights the degree

of difficulty present in controlling this highly nonlinear system. While the cart’s position is

shown to be effectively controllable, the inverted pendula frequently fall out of their desired

trajectories around the desired unstable equilibrium point.



Nalavade et. al. in [2] also uses Lagrangian dynamics to develop a nonlinear model

of the double inverted pendulum system. These equations are then linearized the system

around its unstable equilibrium and applies LQR to successfully balance both pendula in

their upright position. It is unclear however how this method would perform under the

presence of disturbances. Friction at the joints and on the cart rail is also not handled in

this model.

3 Model Development

The model we employ is presented in [1] and is given as:
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where m0 is the mass of the cart,m1 and m2, l1,l2 are the masses and lengths of pendula

respectively, δ0 is the friction coefficient of the cart on the rail, δ1, δ2 are the damping

constants at the joints of the pendula, J1 = 1
3
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2
1, J2 = 1

3
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2
2 are the moments of inertia

about the joints and F (t) is the input force given by the controller. The state variables of

the equation are θ0, the horizontal position of the cart and θ1,θ2 are the angles of the pendula



with respect to their downwards position. These relationships are depicted in figure 1.

4 Simulation Results

Figure 2 shows a simulation of dropping both pendula from 179 degrees from the downward

position. Parameters for this simulation are given as m0 = 3kg, m1 = m2 = 2.75kg,

l1 = l2 = .5m, δ0 = δ1 = δ2 = .1.2kgm2s−1.

Figure 2: The double pendula system dropped with initial conditions θ0 = 0, θ1 = θ2 =

179 ∗ π/180 deg.

The cart moves in phase with the pendula and both angles converge to zero in around 7

seconds. These simulation results are satisfactory in demonstrating the utility of the model



equations given previously as well as the capability of this model for control. We noticed in

performing our simulations that the solver performed very poorly in cases where the damping

coefficients δi were orders of magnitude smaller than the masses. This arises from poorly

conditioned matrices around equilibrium points where θ̇1 = θ̇2 = θ1 = θ2 = 0. To keep this

error from arising in estimation and control, we are careful to choose reasonable damping

parameters that stabilize the system.

5 Moving Horizon Estimation (MHE)

We now assume the masses of the same system examined earlier are unknown (though

assumed to be between 1 and 10 kg.) and implement a moving horizon estimator (MHE)

run at 10 Hz to approximate these masses. The MHE looks back 1.2 seconds in the simulation

and seeks to match predicted and measured values of the carts position. Measured values are

obtained by adding Gaussian noise to the simulated cart’s position, demonstrating the MHE’s

robustness to sensor noise. The estimator’s weighting on measurements is approximately 10x

that of model values and a squared error norm objective function is used in the estimation.

Figure 3: Sensitivities of the MHE near the end of the simulation demonstrating that the

estimator has converged on masses m1 and m2.



We initialize θ1 and θ2 at 50◦ and 0◦ respectively and the horizontal position at zero. The pen-

dula are then released and allowed to settle to their equilibrium positions with no input force being

applied. Figure 3 shows sensitivities of the objective function to changes in the estimated masses.

At the end of the estimation routine these sensitivities are approximately zero, demonstrating the

estimator has converged on accurate estimates of the masses. Figure 4 shows that over a period

of about 4 seconds, the estimator is successful in closely approximating the masses of the system.

Final estimates of the masses were reported at m̂1 = 2.8kg and m̂2 = 2.97kg.

Figure 4: The double pendula system dropped with initial conditions θ1 = 50, θ1 =

50π/180, θ2 = 0 deg. The MHE successfully converges on masses that match measured

and model values.



6 Model Predictive Control (MPC)

MPC utilizes the nonlinear dynamic equations directly to formulate an optimization problem over a

horizon H = ti, ti+1...tin . At each time step, the controller searches for an optimal control sequence

ui, ui+1...uin that will drive the states to their desired set points.

For convenience, we define two additional variables,

C1 = 1 + cos(θ1) (1)

C2 = 1 + cos(θ2) (2)

We then design a model predictive controller (MPC) that seeks an optimal input sequence to

drive C1 and C2 to zero (pendula pointed upwards). We define a squared error objective function

in (3) with Cd1 = Cd2 = 0 with equal weightings placed on both states.

argmin
ui,ui+1...un

φ(x) = (χ− χd)
TWt(χ− χd) + δuT cδu

subject to dynamic eqs.

(3)

We set the cost on changing the input to be cδu = 10−5 and define an upper and lower limit of

input force of +/-500N. To reduce the complexity of the optimization, control inputs are allowed

to change every other step in the MPC horizon. The system parameters are kept the same as in

previous sections, and state variables are initialized at rest with both pendula downwards. The

controller is run at 100 Hz with a time horizon of .20 seconds. The APOPT solver is used as the

default solver however, when this solver fails to converge, the IPOPT solver is used. Results of

control over a one second interval is shown in figure 6.

The controller successfully balances the pendula upwards for a time before the high degree of

nonlinearity near the desired equilibrium state render the system instantaneously uncontrollable.

At this point, the controller begins to chatter as the sensitivities of the objective function to the



Figure 5: Sensitivities near the unstable desired equilibrium point.

manipulated variable near this point begin to disappear. Sensitivities near the unstable equilibrium

point are shown in figure 5.

The second pendulum eventually falls away from the desired set points as time progresses.

Using different objective norms or weightings on objectives did not in this case improve control. It

was found that despite the second pendulum falling away from the desired set point, sensitivities

of the objective function to input force further vanished. In essence, the controller had fallen into

a local minimum and would readily sacrifice the second pendulum’s objective to keep the first at

its desired set point. Longer horizons occasionally provided better control, however often solvers

would fail to converge and resulting control would be sub-optimal. In short, the double pendulum

system is an extremely difficult nonlinear system to control and using a linearized feedback system

as shown in [2] may be more effective than MPC.

7 Conclusion

Simulation, estimation and control have been demonstrated on the double inverted pendulum

in this paper. Simulation results match the expected behavior of the system, and results from

the estimation demonstrate how moving horizon estimators can be used to determine unknown



Figure 6: Sensitivities near the unstable desired equilibrium point.

parameters. Finally a controller is shown to temporarily balance the double inverted pendulum

system about its unstable equilibrium point, before system nonlinearities and low sensitivities

prevent accurate control.
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