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Optimization of Battery Storage Profitability with Wind Energy 

Abstract 

As wind energy production rises, energy storage methods are needed to decrease intermittency and 

allow better control of the grid. This study considers the effect of a control system optimizing battery charging 

and discharging to maximize profitability. Different locations, dates, and constraints were considered. An 

analysis of different objective functions and solver capability is implemented. A battery storage system with 

an optimized charging and discharged schedule can improve profitability of a wind farm, if capital costs are 

neglected.  

Introduction and Background 

As concerns about global warming mount, renewable energy sources are increasingly being called on 

to replace fossil-fuel power plants. However, renewable energy sources have issues with intermittency that 

cause problems with grid management and result in energy waste. Energy storage systems have been 

suggested as a way to reduce the strain on the grid and reduce grounded electricity. Many types of energy 

storage have been suggested, but battery technology is currently considered the best option. 

Large scale battery storage has been used in several high profile energy shortage situations in the last 

year, as evidenced by Tesla’s installation of 100 MW of storage in southern Australia in 2017.1 Despite the 

hype, battery technology is still expensive and has a potentially high environmental cost.2 This study seeks to 

solve the problem of intermittency and battery cost by optimizing when power is discharged from battery 

storage to maximize profits from a 100 MW wind energy scheme with a 2400 megawatt hour (MWh) battery 

capacity over a 24 hour period. Due to high capital costs, this study only considers the degradation costs to 

the battery and efficiency losses in considering profitability of the wind farm. Wind and power data from 
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several locations along with hourly energy pricing data were used to optimize. Changes in the price of 

batteries, bounds of the manipulated variables, and the initial guesses of the variables were also considered 

in this paper.  

Modeling Framework 

Software 

The optimization was written in GEKKO, a python library that allows solving in the APMonitor 

Modeling Language. APMonitor converts Differential and Algebraic Equations (DAEs) to Nonlinear 

Programming (NLP) by using orthogonal collocation on finite elements to discretize the model. Derivative 

values are related to non-derivative values by creating a matrix of coefficients that is used to produce 

algebraic expressions; gradients are determined by automatic differentiation. An Interior Point Solver 

(IPOPT) then solves the system of equations.3  

Model Overview 

In this model, wind farm power and time-of-day pricing were used to control battery charging and 

discharging, shown in Figure 1 as valves. By manipulating the flow of electricity from the windmill to either 

battery storage or to the grid, an optimum schedule can be found for dispersal of energy for maximum profit. 

The equations representing this system and a discussion of their meaning is found in the next section. 
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Model Assumptions 

A key component of the model was accounting of battery degradation costs. Hoke et al. developed a 

model of battery degradation as a function of temperature, state of charge, and depth of discharge.4 

𝐶𝑏𝑑 is the cost of battery degradation, 𝑇 is temperature, 𝑆𝑂𝐶 is state of charge, and 𝐷𝑂𝐷 is depth of 

discharge. The equation says there is a cost due to power fade and a cost due to capacity fade; whichever 

cost is greater is the true degradation cost. To simplify the optimization, in this study only capacity fade was 

considered. 

 𝐶𝑏𝑑 = max⁡((𝑐𝑄,𝑇 + 𝐶𝑄,𝑆𝑂𝐶 + 𝐶𝑄,𝐷𝑂𝐷), (𝑐𝑃,𝑇 + 𝐶𝑃,𝑆𝑂𝐶 + 𝐶𝑃,𝐷𝑂𝐷))⁡ (1) 

Figure 1: System Schematic 
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Batteries degrade due to temperature. This effect is seen most readily during charging due to the 

resistance of the battery. The cost of degradation due to temperature effects is 

where 𝑇𝑎𝑚𝑏  is ambient temperature, 𝑅𝑡ℎ is thermal resistance of the battery pack, 𝑃(𝑡) is time-dependent 

power fade, 𝑡𝑐ℎ charging time, 𝑡𝑚𝑎𝑥 is maximum charging time, 𝑃𝑚𝑖𝑛   is minimum power required to fully 

charge the battery, and 𝐿𝑥(T) is an Arrhenius function. Because of the size of the battery and the 24 hour 

window of optimization, temperature related degradation wasn’t considered in our model.  

The cost of degradation per hour due to state of charge is 

where 𝐶𝑏𝑎𝑡 is the cost of the battery array, 𝑆𝑂𝐶𝑎𝑣𝑒 is the average state of charge of the battery, 𝐶𝐹𝑚𝑎𝑥 is 

the amount of fade until battery death, and 𝑚 and 𝑑 are curve fitting parameters.  Variables 𝑚 and 𝑑 were 

fit to capacity fade data.5 

 The cost of the battery was related to the cost per kilowatt hour times the size of the battery array 

(𝐵𝑎𝑡𝑡𝑚𝑎𝑥).  

The battery array considered has a capacity of 2400 MWh. This size was chosen because it has the capacity 

to supply a full day’s energy. The battery array was fixed rather than optimized because the optimizer set 

the battery size to zero, reflecting the high cost of the battery. The size of the wind farm was chosen to 

reflect the median size of modern wind farm capacity. 

 
𝐶𝑥,𝑇 = Cbat ∗⁡(∫

1

8760 ∗ 𝐿𝑥(𝑇𝑎𝑚𝑏 + 𝑅𝑡ℎ ∗ 𝑃(𝑡))
𝑑𝑡 +

𝑡𝑚𝑎𝑥 − 𝑡𝑐ℎ
8760 ∗ 𝐿𝑥(𝑇𝑎𝑚𝑏)

−
𝑡𝑚𝑎𝑥

8760 ∗ 𝐿𝑥(𝑃𝑚𝑖𝑛∗ 𝑅𝑡ℎ + 𝑇_𝑎𝑚𝑏
)⁡ 

(2) 

 
𝐶𝑆𝑂𝐶 = 𝐶𝑏𝑎𝑡 ∗

𝑚 ∗ 𝑆𝑂𝐶𝑎𝑣𝑒 − 𝑑

𝐶𝐹𝑚𝑎𝑥⁡⁡ ∗ 15 ∗ 8760
⁡ 

(3) 

 
𝐶𝑏𝑎𝑡 =

𝑐𝑜𝑠𝑡

𝑘𝑊ℎ
∗ 𝐵𝑎𝑡𝑡𝑚𝑎𝑥⁡ 

(4) 
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The cost of degradation due to depth of discharge is related to the change in SOC and the number of 

cycles at which it occurs. 

To create this simplified model, Hoke et al. assumed that 𝑁 cycles at a given 𝑆𝑂𝐶 was the same as 𝑁 cycles 

with an average ∆𝑆𝑂𝐶 change. There is no data to confirm this assumption, but simplicity in the battery 

model was preferred. In this study, a constant ∆𝑆𝑂𝐶 of 25% was assumed, but it was found that the 

simulation wasn’t sensitive to this value. Because of this assumption, the cost of degradation due to depth 

of discharge simplified to a constant. 

The current energy in the battery (batt) is represented by the following differential equation 

where 𝑈1 is the portion of the power from the windmill going into the battery, 𝑈2 is the portion of power 

discharged from the battery, 𝑝𝑜𝑤𝑒𝑟 is the power produced by the windmill, and 𝜂 is the efficiency of the 

charging and discharging process. The efficiency was set at 95% to account for losses due to both charging 

and discharging.6 This equation is an energy balance of the battery. 

To calculate the profit of the wind farm, we must first account for the transfer of energy to the grid. 

The balance on the energy in the system and sold to the grid is 

 

𝑁 = (
∆𝑆𝑂𝐶

145.71
)
−

1
.6844

⁡ 

(5) 

 𝐶𝑏𝑎𝑡 = 𝐶𝑑𝑜𝑑 ∗ 𝑁⁡ (6) 

 𝑑(𝑏𝑎𝑡𝑡)

𝑑𝑡
= 𝑈1 ∗ 𝑝𝑜𝑤𝑒𝑟 ∗ 𝜂 − 𝑈2 ∗ 𝑏𝑎𝑡𝑡⁡ 

(7) 

 𝑔𝑟𝑖𝑑 = (1 − 𝑈1) ∗ 𝑝𝑜𝑤𝑒𝑟 + 𝑈2 ∗ 𝑏𝑎𝑡𝑡⁡ (8) 
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where 𝑔𝑟𝑖𝑑 is the power sold at each time step. The energy sent to the grid is a function of the power from 

the windmill and power discharged from the battery.  

Calculating profit requires the amount of energy provided to the grid and the hourly price of 

electricity; this gives the revenue.  In this study, only the cost of state of charge and depth of discharge are 

taken into account. Subtracting the costs of degradation from the revenue gives the profit. 

In Equation 9, 𝑝𝑟𝑜𝑓𝑖𝑡 is the profit made by the system at every time step and 𝑇𝑂𝐷 is the time step price of 

electricity per MWh. Because 𝐶𝑑𝑜𝑑 is the total cost of depth of discharge in a day, this value was divided by 

24 to get the cost of an hour. 

Input Data 

Wind and power data from various areas and time of day prices from several days were used. Wind 

speed data from Austin, Texas,7 power data from the Sotavento Experimental Wind farm in Galacia, Spain,8 

and power data reported from BMRS with data from Great Britain’s electricity market. 9  Data for each 

location was collected on July 20 and December 20, 2017. These sources were chosen to give a better idea 

of the changes in energy production at different locations and seasons. The different types of wind and 

power data will allow interesting comparisons for power providers. The Austin, TX wind data is an average of 

the hourly winds over a year, the power data from BMRS in the UK is the total wind production across the 

UK at each hour, and the data from the Sotavento Experimental Wind farm is from a single wind farm. All 

power data have been normalized by making the highest power value equal to 100 MW to make comparison 

of different locations and dates easier.  

 
𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑔𝑟𝑖𝑑 ∗ 𝑇𝑂𝐷 − 𝐶𝑆𝑂𝐶 −

𝐶𝑑𝑜𝑑
24

 
(9) 



7 

 

 This equation converts the wind data to power data. 

In Equation 10, 𝑃 is the power generated by the windmill, 𝜌 is the density of the air, 𝐴 is the cross-sectional 

area of the windmill, and 𝑣 is the wind speed.10 

Hourly pricing data for July 20, 2017 and December 20, 2017 was sourced from real time energy 

price data in the central US.11 The same pricing scheme was used for all of the location optimizations. This 

allowed a better comparison of the different locations than if location specific pricing had been used. This 

was especially crucial due to differences in energy subsidization in the different markets considered.  

Manipulated Variables 

The manipulated variables are U1 and U2, which are shown as valves in Figure 1. The manipulated 

variable U1 aims at controlling the percentage of power currently produced going into the battery or the 

electricity grid. If U1 is 100%, then all of the power being generated goes into the battery. Conversely, if U1 

is 0%, all of the power produced is sold directly to the grid. U2 is also a percentage, capped at 20%. It 

represents the percentage of the battery that can be discharged to the grid at any time step. The 20% cap is 

reflective of the limits of safe battery discharge for long term battery life.12 This cap can be adjusted as safer 

battery discharging methods are available.  Several other bounds are considered in this paper and can be 

seen in the results section. 

Objective and Constraints 

Our model objective was to maximize profits. We do this by optimizing over the entire time horizon 

and setting our objective as maximizing profit at every time step. With this approach, we can then sum the 

total of the profit time steps to get a total profit for the day.  

 
𝑃 =

1

2
∗ 𝜌 ∗ 𝐴 ∗ 𝑣3 

(10) 
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Modern battery life management limits how deeply batteries discharge.12 Equation 5 shows that the 

depth of discharge is a large factor in determining battery life.  To avoid shortening battery life, batteries are 

prevented from dropping below a certain percentage. In keeping with this practice, the variable 

representing the battery charge (batt) was limited to 30% of the maximum battery capacity.  

To maximize profits, the model would likely want to sell all power in the battery by the end of the 

day, leaving the battery at the lower bound. This does not reflect the reality of power production, where 

needs are cyclical. To reflect this, a cyclical constraint was added to the battery as a second objective. This 

constraint forces the battery to have the same charge at the beginning of the cycle as it does at the end of 

the optimization. This ensures that there is still a power reserve left in the battery to begin the next day.  

Results and Discussion 

Comparison of Locations 

The results of the optimization for the different locations and dates are presented in this section. It 

can easily be seen from the power charts that the averaged wind data from Austin, Texas returns positive 

profits overall. This is intuitive, since averaging over a year allows most of the variability of the wind data to 

be smoothed out. A similar result can be observed in the data from BRMS. Though the data is from two 24-

hour periods, because the data represents all of the wind farms in the UK and was normalized to 100 MW, 

some of the variability of wind power was removed, although not as much as the data from Austin, TX.   The 

Sotavento data is the hourly data from one wind farm, and thus all of the variability of wind power is visible. 

This explains the positive profits from Texas and the UK, while the Sotavento profits are negative for one of 

the days optimized over. The daily profit data is summarized in Table 1. The optimization shows that by 

manipulating the charging and discharging of the battery, profits can be maximized (or at least losses 
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minimized) over the time period. This shows that if wind conditions can be known at least 24 hours in advance 

to some accuracy, a wind farm with battery storage can optimize how power is dispersed to maximize profits.  

Table 1: Daily Profit from Each Location and Date 

Location and Data Date Daily Profit 

UK July 20, 2017 $35,198.06 

UK Dec 20, 2017 $8,126.53 

Spain July 20, 2017 -$21,564.68 

Spain Dec 20, 2017 $13,939.53 

Austin Average Data, July 20, 2017 $16,926.25 

Austin Average Data, Dec 20, 2017 $6,494.47 
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Figure 2: UK July Plots 

Figure 5: Sotavento December Plots Figure 4: Sotavento July Plots 

Figure 3: UK December Plots 
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Discussion of Cost Changes 

The optimization results were highly dependent on the cost of the battery. Several different costs 

were considered, from current costs to predicted future costs.13  

These values were tested on the Austin, TX power data with time of day pricing from July 20, 2017. 

As would be expected, the lower the battery cost is, the more profitable the windmill is. It is important to 

remember that our optimization only considers the operating costs of the wind farm, and none of these 

figures consider the capital costs of the venture.  

Figure 6: Austin December Plots 

Figure 7: Austin July Plots 
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Table 2: Battery Cost and Daily Profit 

Cost of Battery ($/MWh) Profit 

         30 $43,461.09 

         80 $31,823.06 

       145 $16,926.25 

       200 $4,283.62 

Figure 8: Battery Cost $200/MWh Figure 9: Battery Cost $145/MWh 
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Discussion of Battery Initial Charge 

Due to safe battery charging practices, the lower bound of the battery was set at 30%. When the 

variable was initialized, the lower bound was taken as the initial value. To determine whether that was 

significant due to the periodic constraint, other initial values of the battery were tested on the Austin, TX 

power data with time of day pricing from July 20, 2017. It was observed that there was an optimum initial 

condition, somewhere between 30% and 75%. This would make an excellent area for future optimization 

work. This result shows that our model is very sensitive to the initial condition of the battery, and a better 

model would likely be able to optimize the initial value as well. 

 

 

 Figure 11: Battery Cost $80/MWh Figure 10: Battery Cost $30/MWh 
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Table 3: Initial Charge and Daily Profit 

Initial Charge Daily Profit 

30% Initial Charge $16,926.25 

50% Initial Charge $19,421.83 

75% Initial Charge $618.11 

100% Initial Charge -$13,090.97 

 

 

Figure 12: 100% Initial Charge Figure 13: 75% Initial Charge 
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Discussion of Upper Bounds of 𝑼𝟐 

Current battery technology places limits on how fast batteries can be charged and discharged. The 

rate of charge and discharge has a large effect on the number of cycles in a battery’s life. In this study, it was 

assumed that the limit for the battery was 20% per time step in the battery model in keeping with charging 

practices. As battery technology progresses, faster charging and discharging may become a reality. 12,14 

To reflect this, several upper bounds were considered on 𝑈2, the variable representing the percentage 

of the battery discharged per time step. These values were tested on the Austin, TX power data with time of 

day pricing from July 20, 2017. It was found that the higher the 𝑈2⁡upper bound was, the more profitable the 

venture was. This make sense, considering that the optimizer was allowed to sell all of the electricity at the 

most profitable time step. It was surprising that degradation costs did not increase more than the profitability. 

It could be that neglecting the degradation due to the large temperature change associated with rapid 

Figure 14: 50% Initial Charge 
Figure 15: 30% Initial Charge 
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discharging didn’t allow the cost of degradation to increase as quickly as profitability. It is also possible that 

degradation of the battery isn’t as significant a factor as was expected.   

Table 4: U2 Upper Bound and Profit 

U2 Upper Bound Profit 

U2 = 1 $21,039.48 

U2 = .5 $19,836.27 

U2 = .3 $16,926.25 

U2 = .1 $13,650.00 

 

 

 

Figure 16: U2 Upper Bound of 1 Figure 17: U2 Upper bound of .5 
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Discussion of Objective Function Choice 

While examining some initial results, it was discovered that the optimizer was finding local maxima 

rather than the best value for profitability. Our initial objective function was  

By changing the objective function to  

the best result is achieved. It is suspected that the initial objective function led to a scaling issue. With the 

original expression, the objective function reached a magnitude of 108. At this high value, when the 

optimizer found a local maximum, the tolerances of APMonitor were reached and the solution was 

accepted. APMonitor is designed for tolerances in the range of 0-100. By changing our objective function, 

the objective function was reduced and the solver had reason to continue looking for the best solution.  

 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = maximize⁡(𝑝𝑟𝑜𝑓𝑖𝑡2) (11) 

 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = maximize⁡(√𝑝𝑟𝑜𝑓𝑖𝑡
2
) (11) 

Figure 18: U2 Upper Bound of .3 Figure 19: U2 Upper Bound of .1 
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These plots compare the results with the two different objective functions on wind data from Austin 

and time of day pricing from July 20. The updated objective function returns a higher profit by $17,000.  

 

Conclusions 

Our results show that wind energy with optimized battery usage can increase profitability of wind 

farms. These results can be seen even when including the costs of battery degradation and has been proven 

for several locations and dates. 

The cost of the battery is the major expense in the energy system. Thus, enhancing battery life is key 

to increasing profits. As battery costs drop and battery technology is improved, battery storage will become 

more profitable.   

Figure 20: Original Objective Function Figure 21: Updated Objective Function 
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