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Dear Dr. Hedengren,

We are pleased to submit to you our final project, which is an analysis of trajectory planning
methods, with the specific application of unmanned autonomous vehicles (UAVs). UAVs are
becoming a more common subject of study. With problems such as privacy and restricted areas, the
autonomous control of UAV models in denfense situations needs to be more fully explored.

Our project investigates the modeling of UAVs based on natural flight patterns of birds. In
particular, we focus on the prediction of a target UAV's position in order to intersect that position
with a chasing UAV. Such a prediction method could be used in multiple scenarios, including using
UAVs to destroy other UAVs that are in restricted zones, capturing UAVs that may contain useful
information, etc.

In our project we have two UAVs, each of which flies independently of the other. One UAV takes
off initially, and follows a set path given to it. The second UAV then observes the first, and
estimates the first UAV’s next position. It then takes that estimation and sets it as its target and
attempts to collide or intersect with the first UAV at its predicted point. The following items are
the focus of our project and hope to explore further through the use of dynamic optimization and
model predictive control.

o Solve a system that contains controller lag.

Analyze different methods of estimating and planning trajectories, such as using first-order and
higher-order polynomial fitting and ARMA time-series modeling.

Create a system that can be easily implemented in real UAV scenarios.

Model natural systems of bird flight.

o Compare L1-norm and squared error objectives.
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In investigating these prediction methods, we have started to uncover further problems and avenues
of research, and hope that that these problems will continue to be explored in the future.

Yours faithfully,

Dane Bjork
Joel Eliason

Attached: project report



The Eagle and the Pigeon: An Exercise in Trajectory Planning and
Model Predictive Control

Dane Bjork, Joel Eliason, Hasan Sildir

April 2016

Figure 1: Eagle Vs. Pigeon Model

1 Abstract

Many autonomous systems are currently being developed
in order to track and follow targets. Such systems, how-
ever, are fundamentally unable to intersect the current
state of their dynamic target, simply because they are un-
able to accurately predict the future states of their target.
These systems are inherently reactive to the movement of
their target, rather than actively predicting the target’s
movement. Traditionally, control theoretic models have
relied on such methods as system identification in order
to predict future states. However, without accurate mea-
surements of input and/or rich enough measurements of
the target’s position, results from system identification
become much less accurate. Thus, autonomous systems
for which the primary objective is to intersect the cur-
rent state of their target require fast, accurate methods
that rely on relatively few measurements. We present
our results in developing such methods in the following,
utilizing a toy model of an eagle following a pigeon as
representative of one control process predicting the state
of another.

2 Introduction

Model predictive control (MPC) is an extremely useful
technique for using the process model for a system (which
is, at its most coarse grained, an input-output model) to
determine the optimal inputs in order to follow a trajec-
tory and achieve a desired output. Often, though, model
predictive control is not enough, particularly if process
set points are dynamic and changing with time. In these
cases, it is often more economical and productive to pre-
dict future set points and converge to them. Otherwise,
by the time the controller converges to the current set
point, the process has not remained constant and the
desired set point has moved, relegating the controller to
always lag behind the process. Of course, one could uti-
lize model predictive control techniques to understand
how the process is going to move. This is an oft-used
method to overcome such controller lag. However, with-
out a model of the process and/or rich enough data to
estimate the process model, alternative methods must be
used instead. It is these alternative methods that will be
the particular focus of this project.



In this work, we combine the strategies of model
predictive control along with these trajectory planning
methods and showcase these efforts in a toy model of
an eagle and a pigeon (representative of one UAV at-
tempting to catch another). The eagle is tasked with de-
termining the current and future position of the pigeon
and then determining the optimal manipulated variable
moves in order to converge with the pigeon, all while the
pigeon is moving. Thus, the position of the pigeon is con-
tinuously changing, implying that the process set points
of the eagle are changing concurrently. A comparison of
optimal methods for intersection of the pigeon’s path are
our main focus in this paper, and we present numerical
results from simulation of the aforementioned eagle and
pigeon to showcase these methods. An immediately ap-
parent application for this work is in the development of
UAVs and drones designed to catch other flying objects,
though the results are much more broadly applicable.

In reviewing the literature and recent advances in
autonomous UAV development, there are examples of
UAVs that are able to catch other drones. However, such
work as has been done by Rastgaar [5] or by scientists
at Malou Tech [1] still rely heavily on tracking of the
target UAV and are less concerned with the intersection
of the current position of the target UAV. These devel-
opments are more particularly focused on tracking the
target UAV long enough to be able to catch it with a net
while it remains more or less stationary. Such projects,
while applicable, are less informative of methods of over-
coming controller lag. While there are many research ar-
ticles and projects dealing with collision avoidance with
UAVs [6], we were unable to find any dealing with UAV
collision. It seems that most UAV research deals with
protecting and maintaining UAVs, such as the commonly
cited Rathbun’s algorithm to aid in a UAV’s navigation
in uncertain environments [7]. These are all very differ-
ent from our approach where we exhibit the need for a
collision between UAVs.

However, outside of the development of UAVs, there
are many examples of extrapolation methods that are
used in prediction. Such strategies include various meth-
ods as polynomial fit by least squares regression and
ARMA models fit by maximum likelihood estimation.
These predictive methods are the focus of the following
section. A method that we did not test, but would be
tested in the continuation of this project, is the Kalman
filter [4]. As this is a very widely used estimator, com-
paring our results with that of the Kalman filter would
be sure to prove fruitful.

3 Methods

As mentioned previously, in beginning this project, we
initially were inclined to rely on system identification
methods, as these are quite widely used and are often
quite accurate. However, as the project progressed, we

realized that such methods typically rely on a knowledge
of the inputs and outputs of the target. In designing
our methods with UAVs in mind, we knew that the in-
puts of the target UAV would not be available to the
chasing UAV. There are, of course, additional system
identification methods that do not require knowledge of
inputs; however, such methods usually require a large
amount of time-series output data. Our project mentor,
Hasan Sildir, initially pointed us in the direction of such
a method, called ARMA modeling [2]. However, in test-
ing the predictive value of such a method on our quite
constrained data sets (which often contained 10-20 data
points), we were quick to realize that an ARMA model
would give us very poor results when fit on such a small
data set. Therefore, we decided to focus our efforts on
extrapolation by polynomial fitting. It is these methods
that are discussed below.

3.1 First-Order Approximation

Inspired by the derivative component of a PID controller,
our first method was to view the change between consec-
utive time steps as linear and thus following a constant
slope. Therefore, we predicted that the pigeon’s next po-
sition would be a linear function of its current and last
states. Such a prediction is formulated as the following:

(1)

where P; is the position of the pigeon at time step ¢ and
the position is incremented over time steps of unit 1. In
utilizing this linear change method, we knew that such
a method would be limited in the scope of its extrapola-
tion, as the movement of the pigeon would be typically
nonlinear. However, such a method would allow the ea-
gle to converge quickly to a quite close approximation of
the pigeon’s position and allow it to overcome controller
lag.
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3.2 Higher-Order Approximation

The above method allowed us to quickly overcome con-
troller lag and get much closer to the pigeon than simply
tracking the pigeon’s movement did. However, we knew
that since the pigeon’s path would typically be nonlinear,
we were prompted to use higher-order approximations of
the pigeon’s movement, hoping that such an extrapola-
tion would get us a closer prediction to the pigeon’s fu-
ture state than the first-order method. We implemented
this method by utilizing the polyfit method found in the
Numpy library and fitting our data to second- and third-
order polynomials. While sometimes able to give us a
better extrapolation than the first-order approximation,
higher-order methods were generally much more prone to
error and thus a much higher variation in eagle trajectory
was seen. In some cases, this resulted in worse predictive
value than the linear method. A thorough comparison of
the two methods is offered in Section 5.



4 Analysis of Models

The eagle and the pigeon models were created based on
the 747c models used in class on a previous assignment,
which originated in the textbook Advanced Textbooks in
Control and Signal Processing [3]. The model we used
is shown in equations 2 & 3. However, in simulating
the pigeon and eagle, we realized that we needed to add
constraints and tune control parameters in order to make
our models more realistic. In order to prevent the models
from going “underground” we altered the model slightly,
with a hard constraint on both the pigeon and the eagle
such that their vertical positions could not be negative.
There are also different constraints set on the pigeon and
the eagle in dealing with thrust. The eagle would be
much more capable of thrust, giving it less of a limi-
tation on its range of thrust. When running both the
pigeon and the eagle models separately, they are able to
reach their given set points, but do so differently based
on these constraints. This can be seen in Figures 2 & 3.
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Figure 2: Pigeon model run with a set point of 500 in
the horizontal position and 250 in the vertical position.
Solved using L1-norm objective.

N oW
SR

Distance
o
oo o

|
N
=)

-30
500
400 -
300 — Vert
200 -
100 -

Distance

250 +
200 +
150 +
100 +

)|

0 100 200 300 400 500
Horiz

Vert

Figure 3: Eagle model run with a set point of 500 in
the horizontal position and 250 in the vertical position.
Solved using L1-norm objective.

Because these models are very similar, the sensitivity
analysis of both the thrust and elevator positions behave
with similar results. For both the eagle and the pigeon
the thrust and elevator positions were tested. For the
thrust sensitivity analysis we held the elevator position
constant at 0, and about halfway through the time series
we increased the thrust from 0 to 50 as seen in Figure
4. For the sensitivity analysis of the elevator position we
held the thrust constant at 20. The elevator position was
initialized at 0, then increased to 5 one third of the way
through the time series, then increased again to 10 later,
as seen in Figure 5. As expected, our sensitivity anal-
ysis shows that our inputs truly do affect our outputs.
The thrust is directly related to the horizontal and verti-
cal distances of our model, and the elevator position and
aid in direction without effecting the change in distance.
The accuracy of our models allows us to assume that we
have an accurate and realistic model when using these
for flight simulations.
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Figure 4: Elevator held constant at 0. Thrust initialized
at 0 and increased to 50 half way through the time series.
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Figure 5: Thrust held constant at 20. The elevator po-
sition was initialized at 0, increased to 5, then increased
again to 10.
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When attempting to reach a set point in our models
we used the two common approaches, the squared er-
ror and Ll-norm objective functions. The squared error
method was able to get close to the set point, but had a
much harder time ending at the given set point. In Fig-
ures 2 & 3 we used the L1-norm method. This method
seemed to prove the most accurate of the two. It allowed
us to give different weights to upper and lower set points,
and allowed the model to be very precise in hitting its tar-
geted set point. When using the squared error, we were
not able to compare our different approximation meth-
ods due to the inaccuracy of the model with reaching the
set point. An example of solving for the set points using
the squared error approach is found in Figure 6. This
attempt at reaching the set points got very close, but no
matter which set point was used, there always seemed to
be too much variation in where the model would finish.
In Figure 6 the pigeon missed its set points by almost
one-tenth of its given value.
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Figure 6: Pigeon model run with set point of 200 in
the horizontal position and 100 in the vertical position.
Solved using squared error approach.

Once we made the transition to the L1-norm for con-
trolling our models, we were capable of precisely moving

the pigeon, and trust that our eagle model will be capa-
ble of reaching the next estimated value for the pigeon’s
position. In Figure 7 the pigeon was able to hit each
set point given to it. However, the pigeon still needed
to be kept within the physical bounds of its model when
determining the set points. If the set points were set
too high, the pigeon would not be capable of reaching
it. This evidence only further proves that our model is
closely related to a realistic situation and is accurate in
evaluating our different approximation methods.
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Figure 7: The pigeon hit its first set point of 50 in the
horizontal position and 50 in the vertical position. It
then continued to hit each incremented /decremented set
point thereafter using the L1-norm objective

Once the pigeon was able to move to the designated
set points, we were able to run our model, feed the last
known position of the pigeon into the set point of the
eagle, and watch the eagle trail the pigeon. The eagle
trailed the pigeon because we forced it to be one time
step behind the pigeon. This allowed for us to evaluate
the different approximation methods and watch as the
eagle tries to learn from the pigeon’s previous movements
and try and intersect it.
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Figure 8: An example of controller lag. The eagle lags
behind the pigeon by exactly one time step.

5 Results

Our optimizing efforts were focused on which approxima-
tion method would best minimize distance between the
eagle and the pigeon. The eagle does not know the next
position of the pigeon, but only knows its past positions.
With this knowledge it estimates the next position of the
pigeon using a first, second, or third-order approximation
method.

Each of these approximation methods were used with
three separate pigeon movement models. The first move-
ment type is a constant positive movement in both the
horizontal and vertical positions. However, to each po-
sition move is added a random perturbation. The hor-
izontal position can increase anywhere between 30 and
60 between time steps, and the vertical positions can in-
crease anywhere between 30 and 45. The random pigeon
model is implemented in Figures 9, 12, and 15. The sec-
ond movement type of the pigeon simulates takeoff and
flight. It follows a square root function and levels out the
further the pigeon moves along the horizontal distance.
This movement model can be found in Figures 10, 13,
and 16. The third pigeon movement model is similar to
the previous. It follows a square root model to the mid-
dle time step, where it then reflects its vertical movement
and slowly descends. This simulates a pigeon taking off
and landing and is used in Figures 11, 14, and 17.

These three pigeon models attempt to simulate a real-
istic pattern that a pigeon would follow, and should allow
for a more accurate measurement of the approximation
method’s error (eagle’s distance from the pigeon).

5.1 First-Order Approximation
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Figure 9: The eagle tracking the pigeon on a random-
ized, upward course using the first-order approximation.
Below is the distance (error) of the eagle from the pigeon
at the given time step.
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Figure 10: The eagle tracking the pigeon on a flight based
on the square root value of the given horizontal distance.
The eagle estimates the pigeon’s next point using the
first-order approximation. Below is the distance (error)
of the eagle from the pigeon at the given time step.
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Figure 11: The eagle tracking the pigeon on a flight based
on the square root value of the given horizontal distance.
The flight is reversed half-way through the timestamps
to simulate the pigeon landing. The eagle estimates the
pigeon’s next point using the first-order approximation.
Below is the distance (error) of the eagle from the pigeon
at the given time step.



5.2 Second-Order Approximation
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Figure 12: The eagle tracking the pigeon on a random-
ized, upward course the second-order approximation. Be-
low is the distance (error) of the eagle from the pigeon
at the given time step.
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Figure 13: The eagle tracking the pigeon on a flight based
on the square root value of the given horizontal distance.
The eagle estimates the pigeon’s next point using the
second-order approximation. Below is the distance (er-
ror) of the eagle from the pigeon at the given time step.
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Figure 14: The eagle tracking the pigeon on a flight based
on the square root value of the given horizontal distance.
The flight is reversed half-way through the timestamps
to simulate the pigeon landing. The eagle estimates the
pigeon’s next point using the second-order approxima-
tion. Below is the distance (error) of the eagle from the
pigeon at the given time step.

5.3 Third-Order Approximation
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Figure 15: The eagle tracking the pigeon on a random-
ized, upward course the third-order approximation. Be-
low is the distance (error) of the eagle from the pigeon
at the given time step.
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Figure 16: The eagle tracking the pigeon on a flight based
on the square root value of the given horizontal distance.
The eagle estimates the pigeon’s next point using the
third-order approximation. Below is the distance (error)
of the eagle from the pigeon at the given time step.

w
S

— Pigeon
— Eagle

NN
S &

e T

N

100 200 300 400 500 600 700 800

=
o

Vertical Position
=
&

o w

)

180 Horizontal Position
160 - —  Pigeon
140
120
§ 100
& 80
60
40
20
o
[ 2 4 6 8 10 12
Time Step

Figure 17: The eagle tracking the pigeon on a flight based
on the square root value of the given horizontal distance.
The flight is reversed half-way through the timestamps
to simulate the pigeon landing. The eagle estimates the
pigeon’s next point using the third-order approximation.
Below is the distance (error) of the eagle from the pigeon
at the given time step.



6 Discussion

When comparing the three approximation methods and
their errors based on the pigeon movements, we see that
the first-order model is consistently more accurate than
the other models. The average error rates are difficult to
calculate accurately. This is due to the delay of the hawk.
Because the hawk is required to delay, the distance from
the pigeon spikes initially and becomes a sort of outlier.
However, averages can be approximated by evaluating
the error graphs underneath each of the pigeon models.

By estimating the error values based on the graph,
it becomes clear that the linear approximation method
was the most capable of predicting the pigeon’s move-
ment. While the pigeon model may not be linear, the
first-order model averaged an error rate, or distance from
the pigeon, of less than 50 for each of the pigeon move-
ment types. The eagle was even capable of capturing the
pigeon (intersecting the pigeon at the same time point)
during the in-flight simulation of the pigeon, and came
very close in both of the other simulation.

The other two approximation methods seemed to only
get worse in estimating the future point of the pigeon.
These errors grow substantially from the first-order ap-
proximation to the second, where average distance grows
from 50 to roughly 80, depending on the movement type.
In the third-order approximation, that error average in-
crease to over 100 for each of the model types.

The above results showcase the two methods outlined
in Section 3 of this paper. In particular, we have seen
that the linear method is generally the more accurate
prediction method, due to a smaller magnification in er-
ror. This typically compensates for it being a lower-order
approximation of a higher-order path.

In simulating our pigeon and eagle, we did not intro-
duce measurement or process noise into our final simula-
tions. In more concrete terms, measurement noise could
be thought of as imperfect measurement or estimation of
the pigeon’s position, while process noise could exist as
atmospheric disturbances such as wind. Initial simula-
tions that included these noise processes indicated that
they typically did not affect the error distribution of our
first-order models; knowing beforehand that higher-order
models are more prone to noise, we decided to not in-
clude noise processes in our final model. Therefore, a
better analysis of the effects of noise would be included
in a continuation of this project. Furthermore, our model
is inherently limited to two dimensions; an extension of
simulation to three dimensions would allow a better anal-
ysis of more realistic circumstances. In three dimensions,
hard constraints could be introduced as well that repre-
sent physical objects in the space, such as trees and rocks.
Therefore, in planning trajectories, the eagle would have
to account for such physical constraints that it would not
just be able to fly through. Lastly, feedback methods for
the pigeon were not included in this project. Feedback
would allow the pigeon to evade the eagle and would

therefore add much more realism to the project. Addi-
tionally, it would force the analysis of these prediction
methods in greater depth.

7 Conclusion

The focus of this work was overcoming the problem of
controller lag. Ultimately, this problem boiled down to
a problem of prediction and forecasting, especially un-
der the constraint of limited data, and the utility of
polynomial fitting as an estimation technique in con-
trol. We were able to successfully show that our methods
were able to overcome this controller lag and much more
closely approximate the position of the pigeon. However,
we recognize that there still exists a literal gap between
how closely the eagle approximates the pigeon based on
these methods and the actual intersection of the pigeon’s
current state. Such a gap invites the investigation of
other methods for extrapolation and prediction. In par-
ticular, we advise the investigation of linear extrapola-
tion methods; as noted above, higher-order extrapolation
more often magnifies error than reduces it.

A fitting next step would be exploration of Kalman
filtering methods, as the Kalman filter is the optimal es-
timator of linear dynamical systems [4]. Further test-
ing of other statistical time-series methods (including
deeper investigation of ARMA modeling, which we un-
fortunately were not able to explore deeply due to time
constraints) would be quite beneficial in the design of
fast and accurate methods for prediction. Lastly, it is al-
most certain that there is no “one size fits all” method for
prediction; therefore, an investigation of using multiple
forecasting strategies for the solution of one prediction
problem would certainly be quite fruitful.
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