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Abstract 
Production scheduling and process control have been two separate sciences with a similar goal, to 

optimize economic gain. Very few efforts have been made to integrate the two, but significant economic 

benefits would arise from doing so. The goal of this paper is to integrate the control of a continuously 

stirred tank reactor (CSTR) with a simple 72 hour optimized schedule to maximize profit while meeting a 

required demand schedule. 

The CSTR is controlled by changes in cooling temperature to meet certain product purity concentrations. 

Transitions between product grades are imposed by changing the coolant temperature of the reactor. 

The transition times from the CSTR problem are used in the scheduling problem to give a cost of 

changing the product being produced. 

The scheduling problem takes a demand schedule and profit margins in order to make production 

decisions. These production decisions decide what temperature set point should be used with the CSTR, 

and when the set point should be made. The optimization problem is run over a 72 hour period to 

simulate daily demand constraints. The scheduling problem successfully handles different demand 

schedules and prices for each product in order to give the required cooling temperature set point 

changes to maximize profit.  

Introduction and Literature Review 
The project sought first to understand the limited research done on the topic by recreating the 

benchmark continuous stirred tank reactor (CSTR) prototype discussed in a review article by Michael 

Baldea and Liro Harjunkoski entitled “Integrated production scheduling and process control: A 

systematic review.” The CSTR in this benchmark problem can make three different products: low-grade 

P1 corresponding to 80% conversion, medium-grade P2 (85% conversion), and premium P3 (94% 

conversion) [1].  Our work sets out to recreate the CSTR model from Baldea’s paper and to incorporate a 

scheduling model using APMonitor programming language in Python.  The scheduling model will seek to 

maximize profits by determining when different product purities should be produced in order to 

minimize transition time (between purities) and storage time. Transition times for changes in the 

temperature set point were found by modeling the CSTR problem described previously. Constants 

relating to the kinetics and heat transfer of the CSTR were changed to be more realistic, which helped 

the problem to converge to reasonable solutions. No estimation was required for either model because 

all variables are known or will be manipulated by the optimizer. 

Methods and Model Design 
The project is broken into three pieces: creating a reactor model, creating a scheduling model, and 

interfacing the scheduling and reactor models. The following equations describe the dynamics of the 

CSTR. Equation 1 is the material balance for the reactor while equation 2 is the energy balance that 

describes the temperature dependence of the reaction. A benchmark CSTR problem provided values for 

all the parameters seen in the equations below except for reactor concentration (CA), reactor 

temperature (T), and cooling jacket temperature (Tc).                            
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The only manipulated variable is Tc. The table below identifies the remaining CSTR parameters. 

Table 1: Equation variables 

Variable Definition Variable Definition 

V Volume of Reactor UA Overall Heat Transfer Coefficient x Transfer 
Area 

EA Activation Energy delta H Change in enthalpy  

R Ideal Gas Constant q Inlet flow rate 

k0 Pre-exponential Factor CA Concentration of A 

ρ Reaction Mixture Density CAo Initial Concentration of A 

Cp Reaction Mixture Heat Capacity T Reactor Temperature 

 

Equation 3 below shows the objective function used in the scheduling problem where profit (J) is 

maximized. In the benchmark CSTR problem there are three different product types that differ in purity, 

hence the summation terms. The first term is the revenue based on the amount of product made. The 

second term describes the cost of product storage. The third term assures that only one product is made 

in a given time slot. The fourth term is the cost of raw materials for the process.  

 

 

(3)  

 

There are two key variables for integrating our CSTR and scheduling models. The scheduling model 

provides the production schedule which is based off demand. The production schedule tells the reactor 

how long to produce a specific product and when to change to another. The reactor model will provide 

transition time which is the time it takes to transition from producing one product to another. A shorter 

transition time will have greater power to follow an optimized schedule. The two models will work 

together to maximize profit by determining a production schedule that will best meet demand. Figure 1 

shows how the two problems can be integrated. 



 

Figure 1: Integration between scheduling and process control 

Table 2 shows the model parameters that were used to simulate the CSTR. These are different from the 

benchmark problem in order to be more realistic. The source code for this problem is also included in 

the appendix. 

Table 2: CSTR parameters 

Parameter Value 

Tc (Cooling Temperature) 280 K (Initial Condition) 

Q (Cooling water flow) 100 m3/sec 

V (Volume of CSTR) 100 m3 

Rho (Density of Mixture) 1000 kg/m3 

CP (Heat Capacity of Mixture) 0.239 J/kg-K 

mdelH (Heat of Reaction) 5x104 J/mol 

Ea/R 8750 

k0 7.2x104  

UA (Heat Transfer) 5x104 W/K 

Feed Concentration 1 mol/m3 

Feed Temperature 350 K 

 

Nonlinear model predictive control was used in building the CSTR model. The CSTR model has been 

tuned to handle the different set point changes. For the low grade product (80% purity) the temperature 

set point is 371 K. For the mid-grade product (85% purity) the temperature set point is 377 K. For the 

premium product (90% purity), the temperature set point is 382 K. The figure below shows the 

controllability of the reactor. The temperature is gradually stepped up until the desired concentration is 

produced. Then the temperature set points are changed to produce the various purities. Adequate 

control over close to a 24 hour period is achieved. The controller can handle any set point change to 

match production specifications without causing a runaway reaction. 



 

Figure 2: CSTR temperature profile with set point changes 

 

Figure 3: CSTR outlet concentration profile with set point changes 

Sensitivity Analysis on CSTR Model 
Figure 4 below shows a sensitivity analysis for the CSTR model. It can be seen that the manipulated 

variable, the cooling jacket temperature (Tc), has no effect on the objective function. It does have a 

minor positive effect on the concentration of the desired product (b) in the reactor. It has a major 

positive contribution to the reactor temperature which makes sense due to the fact that the cooling 

jacket temperature directly impacts the reactor temperature. The cooling jacket temperature also 

secondarily impacts the product concentration by manipulating the reactor temperature. It is important 

to note that the concentration of reactant (a) in the reactor is inversely affected by cooling temperature 

with the same magnitude as the concentration of product (b). 



 

Figure 4: AP Monitor sensitivity analysis 

Simulation with Scheduler 
The purpose of the scheduler is to take a product discharge schedule and turn it into an optimal 

schedule for CSTR operation. The scheduler is optimized using a model that adjusts the times that each 

product is produced in the CSTR based on a schedule of trucks coming to pick up a particular product. 

These trucks come from different companies, some that have big contracts and others that are just 

“spot sales”. The amount and spec of the product that a particular truck demands depends on the needs 

of the company making the purchase, and is ordered at least one week in advance. For this project, it is 

assumed that the time of arrival of every truck, and the amount and spec that they are loading is known 

7 days before the arrival of the truck. Hence, the schedule optimizer plans the operation of the CSTR for 

7 days, hour by hour. This trucking schedule is inputted into a .csv file with 168 time points that 

represent the hours for 7 weeks. A 24 hour period of this .csv file is sampled as table 1. 

Table 3: 24hr sample of the trucking schedule from the .csv file. Demand values are totals with units of m3. [1] is 80% purity, [2] 
is 85% purity, and [3] is 90% purity. 

Time (hrs) Demand[1] Demand[2] Demand[3] 

0 0 0 0 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 5 0 0 
7 5 0 0 
8 5 0 0 
9 5 0 0 
10 5 0 0 
11 5 0 0 
12 5 0 0 
13 5 0 0 
14 5 0 0 
15 5 0 0 
16 5 0 0 
17 5 0 0 
18 5 0 0 
19 5 0 0 
20 5 14 0 
21 5 14 0 
22 5 14 0 
23 5 14 0 

24 5 14 5 



 

For the simulator, this .csv file tells the model when each product is to be produced. 

The objective function for the scheduler maximizes a profit equation. The foundation of this equation 

comes from “Integrated production scheduling and process control: A systematic review”, but has been 

modified slightly to fit the present optimization problem. The following equations outline the objective 

of our model which is written for and solved by APMonitor. The equations are kept in APMonitor 

language format. 

 Profit = w[1:3] * price[1:3] - A[1:3] * cstorage[1:3] - q * CR * time (4) 

Where time has units of hours, q is the flow rate through the CSTR set at a constant 1 m3 per hour, CR is 

the cost of raw materials set at $20/m3 reactant, cstorage is the cost to store the product which changes 

for each spec, A is the amount of each product stored, and w is the amount of each product produced. 

The storage, A, was calculated simply as the amount produced minus the amount sold, as seen in 

equation 2. 

 A[1:3] = w[1:3] - sale[1:3] (5) 

Equation 3 shows how the amount produced, w, was calculated in the model. 

 $w[1:3] = intb[1:3] * q  (6) 

Where $ is the derivative with respect to time, and intb is an integer value that represents the three 

product specs.  Figure 5 below is a sample simulation of a simple product schedule. 

 

Figure 5: Scheduling simulation 



The products can only be made one at a time, as shown in the second sub plot. The code takes a binary 

input where a ‘one’ means that product is being produced while a ‘zero’ means it is not being produced. 

The three binary values have to be equal to one at all times in order to ensure that only one product is 

being produced at a time. For this example, there was a demand of 5 for product 1 that needed to be 

met at hour 5. The third plot shows that the accumulated product was 5 at hour 5 then it went to 0 by 

hour 6. This means the product was sold and taken out of storage so the accumulated product goes to 0. 

Product 2 has a demand of 14 that needed to be met by hour 20. At hour 20, all of the product is sold 

and the accumulation goes to 0. 

Sensitivity Analysis on Scheduling Model 
When a sensitivity analysis is performed on the scheduling model, APMonitor shows that the 

manipulated variables (intb1, intb2, and intb3) have no effect on the objective function.  The demand 

schedule controls when each of the products is made.  As can be seen in the third subplot in Figure 5, 

each of the different product purities is made in the time leading up to when each is demanded to be 

shipped out.  The optimizer is more dynamic and can choose when to produce a certain product in order 

to maximize profitability. 

Optimization with Scheduler 
The optimizer defines intb[1:3] from Equation 6 as manipulated variables and sets the objective function 

in the model to maximize Equation 4. The optimizer sees the demand schedule in the .csv file and then 

determines how much total of each product spec needs to be made by each hour, and outputs the 

CSTR’s optimal (most profitable) schedule for spec production and storage. There are no controlled 

variables, only the objective function to maximize profit at the last time point (72nd hour). 

Below is an example of an optimized 3-day schedule. The first figure shows an optimized solution 

without accounting for transition time. The top plot is the profit which totals to $9500 after three days 

of operating. The middle plot shows the ‘intb’ values which indicate which product is being produced. 

The bottom plot shows the storage levels of each product which is a cost in the profit equation. It can be 

seen that this solution changes between products a lot. This isn’t a very precise model because of the 

lack of transition time in the model. To account for transition time a dcost constraint was used to 

discourage changing between products grades frequently. In the scheduling model transition times were 

all assumed as the same and do not account for a change from the low-grade to the premium product, 

which would have a greater transition time. Figure 6 below shows the scheduling solution with the dcost 

function to account for transition time. 



 

Figure 6: Optimization results for a 72 hr schedule without dcost for transition times. 

 

Figure 7: Optimization results for a 72 hr schedule with dcost for transition times. 

As can be seen by comparing Figures 6 and 7, the dcost functions on the manipulated variables intb[1:3] 

reduce the number of transitions from seven to four. The profit was also reduced to $8500. This is 

because the cost of transition times is now somewhat accounted for. Even though this isn’t an exact 

method for implementing transition times found from the CSTR model it is believed to be adequate for 

the scope of this project. 



The shipment schedule must be set up in a way so the output of product does not exceed the maximum 

amount of product that can be produced. The maximum is based on the fixed flow rate of 1m3/hr. If the 

demand on the .csv file exceeds this maximum, the optimizer will be infeasible. To avoid this issue, an 

excel spreadsheet was created to aid in making the schedule so as to not overload the production. This 

spreadsheet basically takes the .csv file setup from Table 3 and adds two columns: “Total Product Sold” 

and “Maximum Product Available”. The maximum product available multiplies the constant flow rate by 

the time and subtracts the total product sold. In making the schedule, it is imperative to keep the 

‘maximum product available’ column above zero. To see this spreadsheet, refer to the Appendix. 

Future Work 
The CSTR and scheduling models are separate, but they are compatible.  The scheduling model 

optimizes the production of the three product purities based on the demand schedule that it is given.  

The optimized production schedule is then used to specify at which temperatures the CSTR should 

operate at certain times.  The temperature set points are manually changed in the CSTR model and the 

controller is able to manipulate the cooling water temperatures to control the reactor temperature and 

corresponding product compositions.  Further improvements can be made to incorporate the scheduling 

and reactor models into one model file so that the scheduler and the controller can communicate with 

each other.  This removes the human “middle man” that has to change the set points in the CSTR model.  

If these models were able to communicate, significant time would be saved and process optimization 

would be facilitated even further. 

In its current state, the scheduling model uses a dcost constraint to represent (simulate) the transition 

time between the production of the different product purities.  While this gives a decent representation 

of how the process behaves, it would be more accurate if true transition time were used in the 

scheduling model.  Step tests performed with the CSTR mode have yielded transition times of 2 hours 

for changes between 80 and 85 percent purity and 85 to 90 percent purity.  For changes between 80 and 

90 percent purity, transition times of 3 hours have been observed.  Knowing these numbers is only the 

first step.  It is more difficult to implement them into the scheduling model in an if-then set up. 



Appendix 

CSTR Model File 

 



CSTR Python File 

 





 



Schedule Model File 

 



Schedule Python File 

 



Schedule Spreadsheet 
time 
(hrs) sale[1] sale[2] sale[3] fin 

total sold 
(m^3) 

max available 
(m^3) 

0 0 0 0 0 0 0 

1 0 0 0 0 0 1 

2 0 0 0 0 0 2 

3 0 0 0 0 0 3 

4 0 0 0 0 0 4 

5 0 0 0 0 0 5 

6 0 0 0 0 0 6 

7 5 0 0 0 5 0 

8 5 0 0 0 5 3 

9 5 0 0 0 5 4 

10 5 0 0 0 5 5 

11 5 0 0 0 5 6 

12 5 0 0 0 5 7 

13 5 0 0 0 5 8 

14 5 0 0 0 5 9 

15 5 0 0 0 5 10 

16 5 0 0 0 5 11 

17 5 0 0 0 5 12 

18 5 0 0 0 5 13 

19 5 0 0 0 5 14 

20 5 12 0 0 17 1 

21 5 12 0 0 17 4 

22 5 12 0 0 17 5 

23 5 12 0 0 17 6 

24 5 12 5 0 22 0 

25 5 12 5 0 22 3 

26 5 12 5 0 22 4 

27 5 12 5 0 22 5 

28 5 12 5 0 22 6 

29 5 12 5 0 22 7 

30 5 12 5 0 22 8 

31 5 12 5 0 22 9 

32 5 12 5 0 22 10 

33 5 12 5 0 22 11 

34 5 12 5 0 22 12 

35 5 12 5 0 22 13 

36 5 12 5 0 22 14 

37 5 12 5 0 22 15 

38 5 12 5 0 22 16 

39 5 12 5 0 22 17 



40 5 12 5 0 22 18 

41 5 12 5 0 22 19 

42 5 12 5 0 22 20 

43 5 12 5 0 22 21 

44 5 12 5 0 22 22 

45 5 12 5 0 22 23 

46 5 12 5 0 22 24 

47 5 12 5 0 22 25 

48 5 12 5 0 22 26 

49 5 12 5 0 22 27 

50 5 12 5 0 22 28 

51 5 12 5 0 22 29 

52 5 12 5 0 22 30 

53 5 12 5 0 22 31 

54 5 12 5 0 22 32 

55 5 12 5 0 22 33 

56 5 12 5 0 22 34 

57 5 12 5 0 22 35 

58 5 12 5 0 22 36 

59 5 12 5 0 22 37 

60 5 12 5 0 22 38 

61 5 12 5 0 22 39 

62 20 12 20 0 52 8 

63 20 12 20 0 52 11 

64 20 12 20 0 52 12 

65 20 12 20 0 52 13 

66 20 12 20 0 52 14 

67 20 12 20 0 52 15 

68 20 12 20 0 52 16 

69 20 12 20 0 52 17 

70 30 12 20 0 62 6 

71 20 12 20 0 52 17 

72 20 12 20 0 52 20 

 

 


