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Motivation 
We chose a self-balancing mobile robot similar to a segway as our project to implement a MPC. 
This is a type of inverted pendulum which is a classic problem in dynamics and control theory 
used as a benchmark for testing control strategies. It is a fourth-order nonlinear unstable system 
and will fall over without an active controller. The main problem is driving it at both a specific 
location and balancing it upright when it arrives.[1]  

 

Figure 1. 

There is only one variable to manipulate, which is the motor torque of the robot, but these two 
criteria to fulfill. We will give a short description of the objectives below:  

 



Objective 
Control a self-balancing 2-wheel mobile robot similar to a ​Segway human transporter vehicle​. 
The self-balancing 2-wheel bot is a classic inverted-pendulum control problem. 
 

 

 

BeagleBone Mobile Robot 

Controlling the inverted pendulum can be considered as two distinct control tasks: 
1. Manipulate ​𝜏​ to minimize ​𝜃 
2. Manipulate ​𝜏​ to control ​𝑥​ to a setpoint 

 
The two robots we have purchased are somewhat capable of the first task - maintaining the 
robot angle in the vertical with simple PID control algorithms already provided by the vendor. 
But the algorithms are still somewhat unstable and susceptible to disturbances.  More 
importantly, they are not able to control the x-position of the robot, so they randomly ‘wander’ off 
to the left or right and have no way of maintaining a fixed position. 
 
The ultimate objective is to control both robot angle and x-position simultaneously.  This is not 
as simple as it might sound. 
 
The difficulty lies in the two control tasks to be conflicting in the near future (in view of a 
controller). For the system to be able to move from position A to B it first needs to get into an 
unstable forward leaning position and then start the motors to drive forward. This will move the 
robot and keeps it from tipping over. But even just to get this first initial leaning towards the 
direction of the new location it needs to drive a short distance backwards for the robot to tip in 
the right direction, which again is conflicting with a short-term mpc trying to balance or trying to 
drive directly to point B. While driving a control trying to balance the system would stop the 
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forwards movement and therefore stopping the robot. As you can see just the targets of 
balancing the robot and reaching, a desired set point poses conflicting criteria in the short term.  
So why not use a long control horizon, which can see the optimal trajectory from A to B in the 
full time horizon with a very detailed resolution (to be able to balance the unstable system)? 
Such an approach, as we will show works really well, if it can be calculated beforehand, but will 
fail in balancing the real robot, because the calculation time will be too high to react on the robot 
tipping over.  
 
As can be seen this system is a highly unstable system, which needs both a fast control and a 
long foresight. We will try to find a way to combine ideas and MPCs to find a solution, which is in 
its origin based on an MPC adaption. 
 
Useful links: ​Groups sheet​, ​Project proposal homework page​, ​hardware platforms considered​. 

Control System Design 
Our current design for the controller on the robot is depicted in the diagram below. 
 

 
Diagram of Proposed Control System 

 
Several robotics hardware platforms were considered - See ​Sheet of options​. 
 
Criteria for hardware platform selected: 

● Fairly inexpensive so that all team members can purchase their own. 

2 

https://docs.google.com/spreadsheets/d/1xF8xqsjG6oO3C7FRBGgNFTjOtko_9J_HU8Wx7tYXzUo/edit#gid=0
https://classroom.google.com/u/1/c/MjIxMDM4Mjg5MVpa/a/MTE2MjI1OTY0NDda/details
https://docs.google.com/spreadsheets/d/1Oy-ipJEtidcGoFXotMytz026r1AXmXAZ_09hcD540S0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Oy-ipJEtidcGoFXotMytz026r1AXmXAZ_09hcD540S0/edit?usp=sharing


● Arduino is mediocre but prefer something better (newer, faster, runs Python) 
such as a BeagleBone or an Arduino replacement like a STM Nucleo board. 

● Prefer hardware that handles encoders in hardware rather than ISRs. 
● Off-the-shelf platform so that time and focus isn’t diverted to mechanics, battery 

power, wireless communications etc. 

Literature Review 
A quick survey identified many research articles about control of mobile inverted pendulums. 
 
[1] Wikipedia article with equations. Also mentions Kapitza's pendulum: 
https://en.wikipedia.org/wiki/Inverted_pendulum​. 
 
[2] Stabilization fuzzy control of inverted pendulum systems 
J. Yi*, N. Yubazaki 
http://neuron.tuke.sk/vascak/predmety/FSR/Eseje/Seliga%20-%20Stabilization%20fuzzy%20co
ntrol%20of%20inverted%20pendulum%20systems.pdf 
 
[3] The dynamics of a Mobile Inverted Pendulum (MIP)  
Saam Ostovari, Nick Morozovsky, Thomas Bewley UCSD Coordinated Robotics Lab. 
Has section ‘Kinematics’, 2.2, that lists equations and their derivation with Free Body Diagrams 
for the wheel and robot body.  ​http://renaissance.ucsd.edu/courses/mae143c/MIPdynamics.pdf 
 
[4] Approximate nonlinear model predictive control with in situ adaptive tabulation 
John D. Hedengren, Thomas F. Edgar. 
Computers and Chemical Engineering 32 (2008) 706–714 
 

Variables and Constants 
The table below lists the factors that influence the dynamic outcome.  These are categorized 
into factors that cannot change (constants / parameters), factors that can change (degrees of 
freedom or manipulated variables) 
 

 Description Type 

m​r Mass of robot body Constant 

L 
Length of robot body (center of gravity 
to wheel axis) Configurable 

I​r Moment of inertia of robot body Configurable 

3 

https://en.wikipedia.org/wiki/Inverted_pendulum
http://neuron.tuke.sk/vascak/predmety/FSR/Eseje/Seliga%20-%20Stabilization%20fuzzy%20control%20of%20inverted%20pendulum%20systems.pdf
http://neuron.tuke.sk/vascak/predmety/FSR/Eseje/Seliga%20-%20Stabilization%20fuzzy%20control%20of%20inverted%20pendulum%20systems.pdf
http://renaissance.ucsd.edu/courses/mae143c/MIPdynamics.pdf


θ​r Angle of inclination with respect to 
gravity Measured variable 

m​w Mass of wheel Constant 

R Radius of wheel Constant 

I​w Moment of inertia of wheel Constant 

τ Motor torque Intermediate 

F Drive force of wheel Intermediate 

θ​w Wheel angle Control variable 

x 
Horizontal position, velocity, and 
acceleration Intermediate 

g Acceleration of gravity Constant 

Equations 
The following equations describe the dynamic response of the system.  In this case they are 
equations of motion based on conservation of momentum.  The final equations of motion and 
free-body diagrams were copied from reference [3]. 

  

Robot Body Wheel 
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Objective Function 
To control the robot we will minimize a cost function over a moving horizon.  The cost function 
will be dependent on the two main control variables,  and .  Note that we assume noθr x  
skidding of the wheel, so in our model the following relationship holds. 
 

θ  x = R w  
 
We have the option of adding other state variables to the cost function if required.  For example, 
the horizontal and angular velocities ( , ).ẋ θ̇r  

Constraints and Challenges 

● The range of possible torques that the motors can produce will be limited (lower and 
upper bounds) 

● We expect scan-time or processing power to be a major challenge so limiting the 
complexity of the objective function will be a priority (e.g. number of timesteps) 

● When it comes to implementation, the differences between the dynamics of the actual 
robots and the model will be critical.  For example: 

○ Friction (between robot and wheels, and between wheels and ground) 
○ ‘Gyro-scopic’ effects of the motors spinning at high speed 
○ Air resistance 

● Considerable tuning or model estimation tasks may be needed. 
● Since there is no actual torque measurement or control we will have to find a way to map 

motor power input signal to desired torque (this is likely to be a nonlinear relationship). 

Uncertainties 

● Calibration of ‘inclinometer’ - balance_config.h file has setting to zero-out inclination. 
● Communications speed to APMonitor. 

Approach 
We adopted the following five-step approach. 
 

1. Solve with Gekko one-shot 
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2. Simulate system with ODEs 
3. Test PID controller 
4. Test & tune MPC controller 
5. Test MPC on robot 

 
Steps 1 to 4 are complete but step 5 has not yet been started. 
 
Timeline for the project and the anticipated final product for this project. 
 

● Checkpoints 
○ Compile and run rc_balance.c example from 

github.com/StrawsonDesign/Robotics_Cape_Installer​ (done) 
○ Configure rc_balance.c example by editing balance_config.h (in progress) 
○ Measure and model physical parameters 
○ Implement model-based control 
○ Implement return to x=0. 
○ Implement auto-zero for inclinometer. 
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Results 

1. Full horizon solution (long foresight) with MPC 
First we built a GEKKO model from the equations described in the previous chapter. We defined 
the differentials and used arbitrary values for the robot parameters (at this stage we did not 
attempt to simulate real BeagleBone robot). The model optimizing the trajectory of the model 
had a fixed time at which the robot had to reach the target location with a velocity and 
acceleration of zero in a perfect upright position. As can be seen from the shown result, the 
GEKKO model was able to calculate such a trajectory. 

 
In the upper left corner the angle of the robot is shown to be zero at the specified x target of 0 
after 8 seconds, which was the given time to reach the final location. The torque of the motor 
and the position are at a value of zero right at the final point, which also translates into no 
further velocity or acceleration after it. However even with this calculation being fast in terms of 
large dynamic systems, it is to slow to balance a robot. Therefore, we moved on to write a MPC 
for balancing the robot, which was faster and focused just on balancing the robot (bringing the 
angle theta to zero). 
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2. Simulation with scipy.integrate.odeint 
For subsequent simulations we used the ​odeint​ function from the ​scipy.integrate​ Python 
library. This was used to simulate the robot dynamics so that we could test different control 
algorithms applied to the robot. Two differential equations were implemented, and 
numpy.linalg.solve​ was used to solve for the two unknowns, the angular acceleration for 
the robot and the wheel. A motor torque, ​u​, was the input to ​odeint​ from the control 
algorithms.  The Python code for this section of the algorithm is shown below. 
 
Code sample 1. 

import​ numpy ​as​ np 
 
def​ modelDerivFunc(xz, tz, u): 
 
    [θr, θr_dot, θw, θw_dot] = xz   ​# unpack inputs. 
 
    A = np.array([ 
  [Mr*R*L*np.cos(θr), (Iw + (Mw + Mr)*R**2)], 
  [(Ir + Mr*L**2)   ,  Mr*R*L*np.cos(θr)] 
  ]) 
 
    B = np.array([ 
  [Mr*R*L*θr_dot**2*np.sin(θr) + u - θr_dot*Fr], 
  [Mr*G*L*np.sin(θr)  - u - θw_dot*Fw] 
  ]) 
 
    ​# Solve for X where A.X=B 
    X = np.linalg.solve(A, B) 
    θr_ddot, θw_ddot = X   ​# un-pack X 
 
    ​return​ [θr_dot, θr_ddot, θw_dot, θw_ddot] 
 

 
Code sample 2. 

from​ scipy.integrate ​import​ odeint 
 
for​ i ​in​ range(len(t) - 1): 
 
    Y = odeint(modelDerivFunc, 
  [θrz[i], θr_dotz[i], θwz[i], θw_dotz[i]], 
  [t[i], t[i+1]], args=(uz[i], )) 
    θrz[i+1], θr_dotz[i+1], θwz[i+1], θw_dotz[i+1] = Y[1].T 
 
    # Read in measurements from the system (odeint) 
    m.theta.MEAS = θrz[i+1] 
    m.theta_d.MEAS = θr_dotz[i+1] 
    m.phi.MEAS = θwz[i+1] 
    m.phi_d.MEAS = θw_dotz[i+1] 
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    ​# solve MPC model 
    m.solve(remote=​True​) 
 
    ​# Readout new manipulated variable values 
    uz[i+1] = m.tau.NEWVAL 
 

3. Robot angle control with PID 
A simple proportional-integral-derivative (PID) controller (actually without the integral) was 
implemented to test the odeint simulation. The PID was manually tuned and de-tuned to see the 
effects. As expected, if the PID was de-tuned or turned off, the pendulum would fall down. 

 

4. Robot angle control (iterative) with MPC 
This next step included designing a MPC with a much shorter horizon (less foresight) so it could 
react faster on deviations in the robot angle. Again, we took the general dynamic equations 
given in the earlier sections of this report. A short horizon of 3-4 time steps each 0.035 seconds 
long was used for the regarding MPC. Since a fixing on a specific time step in the future is not a 
feasible solution in this case, we started using setpoints of the controlled variables (CV). 
Therefore, the CV of the robot angle theta was set to 0, which means it is in an upright position. 
The code can be found in the Appendix. 
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To test this new MPC just for balancing the robot we started the robot in a tipped starting 
position and added some “pushes” to the angle of the robot in the later time-frame. The system 
was able to balance the ODE depicting the real system measurements. The initial tipped 
position is balanced after around 0.5 seconds (meaning nearly no movement of the robot) and 
the recovery time after a big at 1.4 seconds needs around the same time. This all seems like 
good results, but there seemed to be a small offset between the ODE results and the MPC after 
a bigger number of pushes in different directions, which resulted in a system with some small 
deviations from the set points. Since the pushes were only done at the ODE, so that the MPC 
could just measure the changes, we assumed it was because of the weights on the 
measurement use of the variables for the MPC. Although we defined to use 100% of the 
measurement for the MPC, it did not seem to follow the measurement but rather take also a part 
from its calculated values. However the overall the balance MPC did a good job at holding the 
ODE in an upright position at a reasonable calculation time.  

 

5. Position control (iterative) 
This next step included designing MPC control, manipulating drive torque to control the robot 
angle ​and ​position. The simulation below shows several positional setpoint changes and the 
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robot position (the upper end of the robot) following the setpoint changes. 

 
Unlike the first Full horizon MPC simulation, this simulation did not stabilize the wheel position at 
a final time - the wheel would continue to move while keeping the robot position at its setpoint. 
Attempts were made using gekko.fix() and gekko.Obj with a final objective, but results weren’t 
as good as the first Full horizon MPC simulation. 
 

 
 

Detail of first Full horizon MPC simulation 
showing robot position and wheel position 

converging on setpoint 

Detail of MPC simulation showing robot 
position converging but wheel still in motion 

 

6. Combined approach (first batch then iterative) 
One approach included an initial calculation of the trajectory to reach a specific target in a given 
amount of time, while not tipping over the robot. To be able to include both criteria we fell back 
on the first model described in this section. Before starting the ODE, which could resemble 
moving the robot away from a steady position, a GEKKO model with long foresight preemptively 
calculated a trajectory of tau values. This trajectory was able to drive the robot with the given 
criteria from its starting location to the new set point. At this set point the previously described 
balance control would take over to control the robot in an upright unmoving position. The 
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balancing worked quite well, but keeping the ODE in one spot was not working as good as we 
wanted. The robot would either move, while being nearly upright or just tip over while staying in 
one location. The problem was to set the two criteria at the right values (which was hard since it 
always leads to one being slightly more important). There was also some mismatch between the 
ODE and the MPC even between the measured values. So even after reducing mismatch due 
to some bad parameter, defining the measured and calculated theta would deviate from each 
other. The overall idea worked well in our opinion and could lead to a useful application if it is 
fast enough for the real beaglebone. The robot could be balanced by the balancing MPC, while 
another MPC is calculated a new motor activation trajectory to drive it to a new set point. At this 
new point, it could balance while getting new data for another set point and so on. 

 

Implementation 
One of the robots we purchased (the Zumo 32U4) comes with an example program that 
balances it on it’s end.  We tested this and it is only partially effective.  It uses the built-in 
gyroscope, accelerometer, and PID controller to attempt to maintain a vertical position.  When 
we tested it on a hard floor, we found that it regularly lost control, accelerating to the left or right 
before falling over.  The fact that this robot is running an Arduino-compatible microcontroller at a 
very fast processing rate illustrates how challenging the implementation task is. 
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Next steps 
Currently, the biggest challenge ahead is implementing an iterative MPC strategy that controls 
the robot position and wheel position (or robot angle) as satisfactorily as the full horizon MPC 
simulation.  
 
Once an MPC strategy is designed, the next step would be to run it on the robot using a remote 
solver (GEKKO) via a WiFi connection to a local machine with more processing power than the 
onboard microcontroller. 
 
Suffice to day, we do not expect the model to work first time on the robot.  One of the main 
reasons this is unlikely is probably going to be differences between the simulation model used 
to design the controller and the actual environment (the robot in the real world). 
 
If this proves ineffective (too long turnaround time for next control signal) we will need to think of 
an alternative way to implement MPC.  One option is to develop an ‘explicit MPC’ solution, for 
example by pre-calculating control actions and populating a lookup table that could be 
implemented on the robot and that the code could quickly access in real-time. [4] 

Conclusion and Learning 
The project was a great chance to test the knowledge and skills that we learned from the course 
on a ‘real’ problem.  We found that attempting a challenging problem like this (segway bot 
control) involved a lot of problem-solving and increased our understanding and competence with 
the tools and techniques.  
 
In particular, we encountered the following challenges which provided significant learnings: 
 

● Short vs long time horizons - the mobile inverted pendulum has a noteworthy 
characteristic; the control variables often need to be moved in the opposite direction to 
the set-point in the short term in order to reach the target in the long term.  This forced 
us to think about the time horizon and the separate (but connected) control objectives of 
(i) keeping the robot in the vertical position and (ii) driving it to the desired x-position. 
 

● Model mis-matches – simulation versus MPC.  Deciding to simulate the model dynamics 
separately from the control system (in odeint and GEKKO respectively), forced us to 
tackle the more realistic issue of matching the controller’s model to the ‘real’ robot 
(represented by our odeint code). 
 

● Visualizing the system – because the segway is a mechanical system it is easy to 
represent visually.  Writing an animation script that provided a live visualization of the 
system during the simulation and also a video sequence at the end was very useful for 
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our intuition and problem-solving. 
 

● Tuning the MPC – because the segway required a well-designed and well-calibrated 
controller we were forced to spend considerable time researching and experimenting 
with the many control parameters and settings of the APMonitor solver in GEKKO. 
 

● Speed of solver – It quickly became apparent that the speed of the MPC model was way 
too slow to operate in real time.  This raised the important realisation that implementation 
of the eventual controller on the real robot would require a significant speed-up for it to 
work in real-time. 
 

● Unfortunately, the time we spent fixing and calibrating the MPC controller and 
investigating different types of controller meant that we did not get chance to test our 
solutions on the robots yet. 

Possible Future Research 
One solution to the problem of implementing the full MPC solver on the robot is the possibility of 
generating a continuous function approximation (mapping function) of the optimal control 
actions from the state variables. 
 
One way to do this might be to use a neural network to ‘learn’ the function-mapping from 
repeated examples of MPC control signals generated by GEKKO.  There may be other 
methods. 
 
A second potential application of machine learning could be to train a neural network to model 
the system dynamics purely from actual sensor data.  If this is possible with a reasonable 
amount of data, it could reduce the amount of effort needed in building models from first 
principles and the process of parameter estimation or model fitting. 
 
The second potential application could be in implementing the MPC control policy on the robot. 
If a neural network can be built that is capable of approximating the role of the MPC solver in 
producing optimal control signals for given state variable values, this could be a way to speed 
up and simplify the implementation of the controller.  However, the ability of a neural network to 
comprehensively replicate the control policy with sufficient accuracy is the question. 
 
Finally, reinforcement learning is an area of artificial intelligence that has been around for a long 
time but is only recently starting to result in major achievements, particularly in robot motion 
planning and control.[5]  Could a reinforcement learning algorithm achieve the ‘end-to-end’ 
learning task of developing an optimal control policy for the robot simply with the inputs from the 
sensors and the control objective.  If possible, this would essentially replace the whole MPC 
development process.  Another benefit could be to allow some kind of ‘online learning’ to occur 

14 



that would ensure that the controller adapts to any changes in the robot or environment that 
may occur over time. 
 
This avenue of research will require study of research from other fields such as robotic control 
and artificial intelligence. 
 
[5] Reinforcement Learning: An Introduction. Second edition, in progress. November 5, 2017. 
Richard S. Sutton and Andrew G. Barto, 2014, 2015, 2016, 2017 
The MIT Press 
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