Self
Safe Driving Discount

By Michael Gonzales
CH EN 6960/593R — Dynamic Optimization for Engineers

University of Utah — Brigham Young University

Table of Contents

IO 1o oo [FTox (oo PSSP PRR 1
2. LITEIALUIE TEVIBW ...ttt bbbkt bbbttt e ettt b e b ens 1
3. MOUEI DESCIIPIION ..ttt bbbttt b bbb 2
3.1 WHEEI DY NAMICS: .. .eiuieiiieite ettt sttt ta et e e e s e e te e e e s teesbeentesseesreenneareenreeneens 2
3.2 VENICIE DYNAIMICS: ...ttt bbbttt neab b b s 3
3.3 Combined System (Wheel + Vehicle dynamicCs):.......ccccocviveiieiieieiiese e 4
3.4 SIMUIALTION DELAIL ..ottt a et 5
3.5 CONTIOl DELAIL ..o bbb 5
4. MACHING LEAIMING ...veitiitieiieie ettt e b b bbbttt e b bbb 6
5. Results: Combined MPC and Maching LEarningcccccevveiieieesesiieseese e seesie e e sse e 8
6. DiSCUSSION aNd CONCIUSIONovieiieiie ettt ste e enre e eneenns 10
N o] 01010 1 OSSR 11

1. Introduction

This project is based on the premise that many car insurance companies give their customers a
discount on their premiums when they drive safely. They even go as far as fitting the customer's
car with a device that tracks their driving habits and records things like mileage, speed,
aggressive driving, time of day, etc.! This project will be based on similar principles but with a
twist. The scenario for this project is a self-driving car fitted with an object detection camera that
has competing incentives: reach the destination quickly while driving safely.

The goal of this project will be to implement a control strategy for a self-driving car. The project

will have both a software and hardware component. The hardware will be a camera that views

passing images (e.g., traffic signs/lights, pedestrians, distractions, etc.). The software program

will need to detect the image, classify it, and then export the object's class as an input into the

control strategy. The controller will need to make decisions based on the object. See Figure 1 for

an example.

Slow down or speed
up depending on

Slowtoastopand oo and speed.

Slow to a stop wait until object is
and wait 3 no longer seen.

V' /1 P\ N

www.pinclipart.com and www.clipartmax.com

Figure 1. Example scenario.

The objective of the self-driving car will be to both reduce overall travel time and drive safe.
Emphasis will be placed on limiting the excessive gas and brake pedal movement.

2. Literature review
The machine learning aspect of this project will be image classification using common python
libraries such as Keras and Tensorflow. The external camera will be an ESP32-CAM? board that

transmits images/video via wifi.

The model for the self-driving car is derived based on first principles using vehicle dynamics.
There has been much work published in articles and textbooks that provide models for vehicles.

L https://www.progressive.com/auto/discounts/snapshot/snapshot-faq/
2 https://www.espressif.com/en

A good starting point is a work done by Pushkin Kachroo®, who proposes a model that relates
both wheel and vehicle dynamics into a combined system. This model is adapted for this project.

To help identify optimal deceleration and acceleration, | have found some parallel work done by

Zhaohui Wu* et al., who has published work that relates position, velocity, and acceleration with

rider comfort. There work was referenced to determine if the deceleration would be comfortable
for an actual occupant.

3. Model Description

Sections 3.1-3.3 show the vehicle model used to create both simulation and control. Sections 3.4
and 3.5 detail the simulation and control models.

3.1 Wheel Dynamics:

Angular motion:
[Te - Tb - RwFt - RWFW]

W, =
v Jw
Wy, Angular velocity of the wheel
Jw Moment of inertia of the wheel
Ry Radius of the wheel
T, Shaft torque from the engine
Ty Brake torque
F; Tire tractive force
Fw Wheel viscous friction
Tire tractive force:
Ft = /’L(A)Nv
u(d) Tire adhesion coefficient
Ny Normal reaction force from the
ground

3 Kachroo, P., & Tomizuka, M. (1994). Vehicle Traction Control And its Applications. UC Berkeley: California
Partners for Advanced Transportation Technology. Retrieved from https://escholarship.org/uc/item/6293pirh.
4Z.Wu, Y. Liu and G. Pan, "A Smart Car Control Model for Brake Comfort Based on Car Following," in IEEE
Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp. 42-46, March 2009, doi:
10.1109/TITS.2008.2006777.

Tire adhesion coefficient:

2upApA
1) =
KD =21
A Wheel slip
Ay Peak wheel slip
Uy Peak tire adhesion coefficient
Wheel slip:
/1=—(ww—wv), w*0
w
Wy, Vehicle angular velocity of the wheel
Wy Angular velocity of the wheel

Max angular velocity, i.e. = max(w,,, w,)

Vehicle angular velocity of the wheel:

4
Wy = RW
%4 Vehicle linear velocity
Ry Radius of the wheel
3.2 Vehicle Dynamics:
Acceleration:
_ [NyF, —)]
M,
Ny Number of driving/braking wheels
F; Tire tractive force
E, Wind drag force
M, Vehicle mass

3.3 Combined System (Wheel + Vehicle dynamics):
14

X1 —_ E
Xz - CUW
%y = —f1(x1) + byyu(1)
Xy = —f2(x3) — boypt (1) + b3T
where,
T=T,—T,
1= (x; — x1)
X
x = max(xq, x;)
[F,(Ryx1)]
(x1) = —————
[0 =01,
Ey(x2)
fo(xp) = W] -
w
b Ny,N,,
W (MyR,y,)
R,N,
Don =
2N T
b = 1
> Jw

3.4 Simulation Detail:

To simulate the vehicle, the above model was implemented with the Python optimization suite,
Gekko®. In Figure 2 it shows the vehicle response, velocity, V, for various gas pedal, T,, step
increases.

A0 50 s

50
a0

— 40

A

E 0

=30

s 0

£
o 10 —
o)

0 100 200 300 400 500 0 100 200 300 400 500
time [s] time [5]

Figure 2. Simulation response.

3.5 Control Detail:

The method for controlling the velocity of the vehicle was the use of a model predictive control

(MPC). This MPC controller was created using a separate Gekko model. The variables of interest
in the MPC are:

Control Variable (CV):
- Velocity, V

Manipulated Variables (MV):
- Engine Torque, T, (i.e. gas pedal)
- Brake Torque, Ty,

Some of the preliminary results of the MPC are shown in Figure 3. As seen, the results are not
optimal for some of the following reasons:

- Excessive overshoot of velocity setpoint.

- Not meeting setpoints.

- Simultaneous use of both gas and brake pedal.

- Excessive moment/increase/decrease of gas and brake pedal.

5 https://gekko.readthedocs.io/en/latest/#

Section 5 will detail how the MPC controller was tuned to provide more optimal results which
allowed for achievement of the objective, reduce travel time and drive safe.

0.0 N Rl

175 —_— Vel SP
15.0
125
10.0

75

5.0

25

0.0

0 20 40 60 B0 100

200 1 —— brake
175 s
150
125 A
100 A

7 |

. /L N

75 1 _

oL L

0 20 20 60 80 100

Figure 3. Preliminary MPC results.
4. Machine Learning

Part of the project is also implementing a machine learning aspect. This is done through an
external camera and Python image classifying code. Once a known image is detected that will
feed in as an input into the MPC, adjusting the MVs. The images used for the classification areg
hand gestures. This approach allows for simple data (image) collection and is more dynamic than
showing static photos of traffic signs to the camera. Table outlines which hand gestures are used
and how they are then fed into the MPC for model control.

Table 1. Image classification.

Camera Sees:

MPC Reacts:

No action taken.

Speed change — Increase speed by 20 mph

Pedestrian — Reduce velocity to zero until camera no longer sees
image.

Stop sign — Reduce velocity to zero. Wait for new speed increase
command.

The image classification code (see Appendix) has been successful in classify the hand gestures
shown in Table 1. Figure 4 shows the results of training and validating the classification model.

model accuracy

10 1

[=]
¥}
i

ACCUFACY

o 2 o2 2 o

. LA oh ~i
i i i i i

=]
L
1

=
(&

— frain
— alidation

T
0 5 10 15 20 25 30 35 40
epoch

Figure 4. Validation of classification model.

5. Results: Combined MPC and Machine Learning

As stated in Section 3.5 model tuning was needed to achieve the objectives. The focus of the
tuning was on decreasing the time to reach the velocity setpoint and creating a smooth transition
during braking. The optimal tuning was achieved by adjusting the Gekko model settings for the
MVs, gas (T,) and brake (T}) pedal. Table 2 shows what settings were used and how they
affected the vehicle response.

Table 2. MV settings.

Gekko Setting | Value | Description

Te— COST 0.22 | This value added a penalty for using the gas pedal. The value was
set lower than that of the brake. This allowed for less restrictive
moment of the gas compared to brake. The COST setting was also
needed so that the controller did not attempt to activate both gas and
brake simultaneously.

Th — COST 0.3 The value used was chosen to provide a smooth deceleration.

Te - DCOST 0.08 | This value added a penalty for movement of the gas pedal. This
helped to reduce jerky vehicle motion.

Th - DCOST 0.1 This value added a penalty for movement of the gas pedal. This
helped to reduce jerky vehicle motion.

Te — DMAXHI | 16.7% | This value only allows movement/increase of gas pedal by 16.7%
each time step (0.5 sec). This allows for smooth increase of using
the gas pedal without rapid increase and decrease of velocity.

Th - DMAXHI | 16.7% | This value only allows movement/increase of brake pedal by 16.7%
each time step (0.5 sec).

After tuning the MPC controller and adding in the image classification code into the loop the
script checks the camera through each iteration. The camera image classifiers are now the inputs
into the velocity setpoints of the MPC. Figure 5 shows the results of the combined process.

Camera sees this

image and increases
velocity set point by
20 mph.

71 === Velocity Sefpoint
—— Velocity

0 Zy

40

Camera sees this image
and decreases velocity

to 0. Velocity increases
once image is removed.

6I0 8I0 1(IJO 150
time [s]
Camera sees this image
and decreases velocity
to 0.

Here is the corresponding gas and break pedal movement to achieve the velocity profile above:

80

60

Pedal %
N
o

201

— gas
—— brake

—

0 20

40

60 80
time [s]

100 120

Figure 5. Combine MPC with Image Detection.

6. Discussion and Conclusion

The results in Section 5 show a successful implementation of MPC with Machine Learning.
Figure 5 shows that there is still overshoot when reaching a velocity setpoint. This is intentional
as it is a tradeoff for a shorter vehicle travel time. The deceleration of the vehicle is very smooth.
This is a tradeoff that increases travel time but provides occupant comfort and a safe control of
the vehicle.

Future work for this project would be to add specific objective functions to the Gekko model
rather than manually set MVs options (Table 2) by trial and error. This would quantify the
objectives rather than base then solely on visual evaluation of the resulting data. Also. Additional
images could be added to the classification model to increase the availability of vehicle actions.

10

Appendix

SAVE IMAGE FROM URL

In[]:

#Code used to take and save images used to create classification model

#Code adapted from Stack Overflow user KSs

(https://stackoverflow.com/questions/50948061/how-to-save-or-download-an-

image-that-i-get-in-a-request-python)

import requests
import time

for i in range(100,200):

image path = "C:/Users/asd/OneDrive - University of Utah/Spring
2021/Dynamic Opt/Image classification/images/blank/"+"limage"+str (i)+".jpg"

Picture request = requests.get('http://192.168.1.184/capture’)

if Picture request.status code == 200:
with open(image path, 'wb') as f:
f.write(Picture request.content)

#print ('picture taken',1i)
#time.sleep (0.1)

CLASSIFICATION CODE

In[1

#Code modified from Toward Data Science article authored by Arthur Arnx
(https://towardsdatascience.com/all-the-steps-to-build-your-first-image-

classifier-with-code-cf244b015799)

import numpy as np

import os

import cv2

import random

import pickle

import tensorflow as tf

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout,
Conv2D, MaxPooling2D

from keras.models import model from json

from keras.models import load model

import matplotlib.pyplot as plt

import urllib.request

Prepare Image Data
rEHAAFFAAFHAAFFAAFFAAFFAAFHAAFAA
file list = []

class list = []

DATADIR = "images"

11

Activation, Flatten,

All the categories you want your neural network to detect
CATEGORIES = ["blank","five","one", "three"]

The size of the images that your neural network will use
IMG SIZE = 50

Checking or all images in the data folder
for category in CATEGORIES
path = os.path.join (DATADIR, category)
for img in os.listdir (path):
img array = cv2.imread(os.path.join(path, img),
cvZ2.IMREAD GRAYSCALE)

training data = []

def create training data():
for category in CATEGORIES
path = os.path.join (DATADIR, category)
class_num = CATEGORIES.index (category)
for img in os.listdir (path):
try
img array = cv2.imread(os.path.join(path, img),
cvZ2.IMREAD GRAYSCALE)
new _array = cv2.resize(img array, (IMG SIZE,
IMG SIZE))
training data.append([new array, class num])
except Exception as e:
pass

create training data()
random.shuffle (training data)

X = [] #features
y = []1 #labels

for features, label in training data:
X.append (features)
y.append (label)

X = np.array(X) .reshape (-1, IMG SIZE, IMG SIZE, 1)

Creating the files containing all the information about your model
pickle out = open("X.pickle", "wb")

pickle.dump (X, pickle out)

pickle out.close()

pickle out = open("y.pickle", "wb")
pickle.dump (y, pickle out)
pickle out.close()

pickle in = open ("X.pickle", "rb")
X = pickle.load(pickle in)

12

In[1]:
import numpy as np
import os
import cv2
import random
import pickle
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten,
Conv2D, MaxPooling2D
from keras.models import model from json
from keras.models import load model
import matplotlib.pyplot as plt
import urllib.request

Building convolutional neural network
####A A A AR A A AFAF AR AR R R R A A AF A AR AR HAHS
Opening the files about data

X = pickle.load(open ("X.pickle", "rb"))

y = pickle.load (open("y.pickle"™, "rb"))

normalizing data (a pixel goes from 0 to 255)
X = X/255.0

Building the model
model = Sequential ()

act fun = "relu"

4 convolutional layers

model.add(Conv2D (32, (3, 3), input shape = X.shape[l:]))
model.add (Activation(act fun))

model.add (MaxPooling2D (pool size=(2,2)))

model.add (Conv2D (64, (3, 3)))
model.add (Activation (act fun))
model.add (MaxPooling2D (pool size=(2,2)))

#model.add (Conv2D (64, (3, 3)))
#model.add (Activation (act fun))
#model .add (MaxPooling2D (pool size=(2,2)))

model.add
model.add
model.add
model.add

Conv2D (64, (3, 3)))
Activation (act_ fun))
MaxPooling2D (pool size=(2,2)))
Dropout (0.25))

—_~ e~~~

2 hidden layers

model.add (Flatten())

model.add (Dense (128))
model.add (Activation (act fun))

model.add (Dense (128))

13

model.

The
model.
model.

#callback = tf.keras.callbacks.EarlyStopping (monitor="'loss', patience=3)

add (Activation(act fun))

output layer with 5 neurons, for 5 classes
add (Dense (4))
add (Activation ("softmax"))

Compiling the model using some basic parameters
model.compile (loss="sparse categorical crossentropy",
optimizer="adam",
metrics=["accuracy"])

Training the model,
validation split corresponds to the percentage of images used for the

with 40 iterations

validation phase compared to all the images

history = model.fit (X, np.array(y), batch size=32,

validation split=0.1)

Saving the model

model json = model.to json()
with open("model.json", "w") as json file
json file.write (model json)

model.save weights ("model.h5")
print ("Saved model to disk")

model.save ('CNN.model"')

Printing a graph showing the accuracy changes during the training phase

print (history.history.keys())
plt.figure (1)

plt.plot (history.history['accuracy'])
plt.plot (history.history['val accuracy'])
plt.title('model accuracy')
plt.ylabel ('accuracy')
plt.xlabel ('epoch')

plt.legend(['train',

plt.show ()

Attt ##

Predict an image ######

thrtad Attt Attt t Attt A AR

import
import
import
import
import

tensorflow as tf
urllib.request

cv2

time

matplotlib.pyplot as plt

$matplotlib tk

def prepare(file):
IMG SIZE = 50

img array = cv2.imread(file,

'validation'], loc='upper left')

cv2.IMREAD GRAYSCALE)

14

epochs=25,

In [2]:

new _array = cv2.resize(img array, (IMG SIZE, IMG SIZE))
return new array.reshape(-1, IMG SIZE, IMG SIZE, 1)

CATEGORIES = ["blank","five","one", "three"]
model = tf.keras.models.load model ("CNN.model")

to run GUI event loop
plt.ion ()
here we are creating sub plots
figurel, axl = plt.subplots(figsize=(10, 8))

axl.plot ()

for i in range(60):

urllib.request.urlretrieve ("http://192.168.1.184/capture",
image = prepare("latest.jpg")

prediction = model ([image])

prediction = list (prediction[0])

status = CATEGORIES |[prediction.index (max (prediction))]
axl.clear ()

axl.text(0.3,0.3,status, fontsize=50)
axl.text (0,0,1, fontsize=20)

drawing updated values
figurel.canvas.draw ()

figurel.canvas.flush events ()
time.sleep (1)

MPC Control

from gekko import GEKKO

import numpy as np

import matplotlib.pyplot as plt
$matplotlib tk

import time

import tensorflow as tf

import urllib.request

import cv2

import copy

divisions = 1/2 #divisions per second
SIMULATION MODEL

FHAEFHAAAAHAAAAAFAAAAHAAASA
s = GEKKO (remote=False)

15

"latest.jpg")

In[]:

s.time = [0,divisions]

#constants

s.Mw = s.Const(value = 14) #wheel mass = 14 #kg

s.Rw = s.Const (value = 0.334) #Radius of the wheel #tesla 3

s.Mv = s.Const (1700) #mass of vehicle in kg

s.lam p = s.Const(value = 0.8) #Peak wheel slip

s.mu p = s.Const(value = 0.8) #asphalt=0.9, Peak tire adhesion coefficient
s.Nw = s.Const(value = 4) #number of driving/breaking wheels

#variables

s.Te = s.MV () #engine torque

s.Tb = s.MV () #Brake torque

s.ome w = s.CV(value = 0) #Angular velocity of the wheel
s.vel = s.CV (0, 1b=0)

s.x1l = s.Var(0) #state var 1 [1/s]

s.x2 = s.Var (0) #state var 1 [1/s]

s.lam = s.Var(0)

s.mu = s.Var (0, lb=-1, ub =1)

#intermediates

s.Jw = s.Intermediate (1/2*s.Mw*s.Rw**2) #Moment of inertia of the wheel
s.Nv = s.Intermediate(s.Mv*9.81) #Normal reaction force from the ground
s.Fw = s.Intermediate(0.08*s.ome w) #Wheel viscous friction
s.Fv = s.Intermediate (4*s.vel**2) #drag force

s.x = s.Intermediate (max(s.xl.value,s.x2.value))

s.lam y = s.Intermediate((s.x2-s.x1))

s.mu_y = s.Intermediate((2*s.mu p*s.lam p*s.lam))

s.T = s.Intermediate(s.Te-s.Tb)

s.fl = s.Intermediate(s.Fv/ (s.Mv*s.Rw))

s.f2 = s.Intermediate(s.Fw/s.Jw)

s.bl = s.Intermediate(s.Nv*s.Nw/ (s.Mv*s.Rw))

s.b2 = s.Intermediate (s.Rw*s.Nv/s.Jw)

s.b3 = s.Intermediate (1/s.Jw)

#equations

s.Equation(s.xl==s.vel/s.Rw)

s.Equation (s.x2==s.ome w)
s.Equation(s.xl.dt()==-s.fl+s.bl*s.mu)

s.Equation(s.x2.dt ()==-s.f2-s.b2*s.mu+s.b3*s.T)
s.Equation(s.lam*s.x==s.lam y)

s.Equation(s.mu* (s.lam p**2 + s.lam**2)==s.mu_vy)

#solver options
s.options.imode = 4

MPC MODEL
HHEFHAAAAHAAAAAHAAA
m = GEKKO (remote=False)

16

#m.time = np.arange(0,15,divisions)
#m.time = [0,divisions,1,2,4,6,8,12,15,20,25,30]
m.time = [0,divisions,1,2,4,6,8]

#max torques
Te max = 700
Tb max = 700

#constants

.Mw = m.Const (value = 14) #wheel mass = 14 #kg

.Rw = m.Const (value = 0.334) #Radius of the wheel #tesla 3

.Mv = m.Const (1700) #mass of vehicle in kg

.lam p = m.Const(value = 0.8) #Peak wheel slip

.mu p = m.Const (value = 0.8) #asphalt=0.9, Peak tire adhesion coefficient
= m.Const (value = 4) #number of driving/breaking wheels

2213223233

#parameters

.Te = m.MV () #engine torque
.Te.STATUS = 1

.Te.lower 0

.Te.upper Te max
.Te.DCOST 0.08

.Te.COST = 0.22

.Te.DMAXHI = Te max/6
.Te.FSTATUS = 0

32 232232333 3

.Tb = m.MV () #Brake torque
.Tb.STATUS = 1

.Tb.lower = 0

.Tb.DMAXHI = Tb max/6
.Tb.upper = Tb _max
.Tb.DCOST = 0.1

.Tb.COST = 0.3

.Tb.FSTATUS = 0

2223323233

#variables
m.ome w = m.CV(value = 0) #Angular velocity of the wheel

.vel = m.CV(0)
.vel.lower = 0
.vel.status= 1
.vel.fstatus

32 2 323

I
-

.x1 = m.Var (0) #state var 1 [1/s]
.x2 = m.Var (0) #state var 1 [1/s]
.lam = m.Var (0)

.mu = m.Var (0, lb=-1, ub =1)

32 2 2 3

#intermediates

m.Jw m.Intermediate (1/2*m.Mw*m.Rw**2) #Moment of inertia of the wheel
m.Nv m.Intermediate (m.Mv*9.81) #Normal reaction force from the ground
m.Fw = m.Intermediate(0.08*m.ome w) #Wheel viscous friction

17

.Fv = m.Intermediate (4*m.vel**2) #drag force

.x = m.Intermediate (max (m.x1l.value,m.x2.value))
.lam y = m.Intermediate((m.x2-m.x1))

.mu_y = m.Intermediate ((2*m.mu p*m.lam p*m.lam))

2 32 2 3

. T = m.Intermediate (m.Te-m.Tb)

.fl = m.Intermediate (m.Fv/ (m.Mv*m.Rw))

L£2 .Intermediate (m.Fw/m.Jw)

.bl = m.Intermediate (m.Nv*m.Nw/ (m.Mv*m.Rw))
.b2 .Intermediate (m.Rw*m.Nv/m.Jw)

.b3 = m.Intermediate (1/m.Jw)

2323232323
I
2232323

#equations

.Equation (m.xl==m.vel/m.Rw)

.Equation (m.x2==m.ome_ w)

.Equation(m.x1.dt ()==-m.fl+m.bl*m.mu)
.Equation(m.x2.dt ()==-m.f2-m.b2*m.mu+m.b3*m.T)
.Equation (m.lam*m.x==m.lam y)
.Equation(m.mu* (m.lam p**2 + m.lam**2)==m.mu_vy)
#m.Equation (m.y==m.mu)

22132323233

#objective
#m.Minimize (abs (m.acc))

#solver options

m.options.imode = 6
m.options.cv_type = 1
m.options.max iter = 500
m.options.coldstart = 1

#image classification
def prepare(file):
IMG SIZE = 50
img array = cv2.imread(file, cv2.IMREAD GRAYSCALE)

new array = cvZ.resize(img array, (IMG SIZE, IMG SIZE))

return new array.reshape (-1, IMG SIZE, IMG SIZE, 1)

CATEGORIES = ["blank","five","one","three"]

#

model = tf.keras.models.load model ("CNN.model")
#loop

sec = 200

steps = int (sec/divisions)

#setpoints

#using camera
V_sp = np.zeros (steps)
V_sp_incr = np.zeros(steps)

#not using camera

18

#V _sp = np.zeros (steps)
#V _spl[2:] = 8.9408

#V _sp[int (steps/4):] = 3%8.9408
#V _spl[int (2*steps/4):] = 5%8.9408
#V _spl[int (3*steps/4):] = 0

#wait times

speed wait
pre

0
status = "blank"

#Arrays for values

V =
gas

np.zeros (steps)
= np.array([None]*steps)

brake = np.array([None]*steps)

Time

= np.arange (0, sec,divisions)

##plots##

to run GUI event loop

plt.

ion ()

here we are creating sub plots
figurel, axl = plt.subplots(figsize=(10, 8))
figure2, ax2 = plt.subplots(figsize=(10, 8))
figure3, ax3 = plt.subplots(figsize=(10, 8))

axl
ax?2
ax3

for

.plot ()
.plot ()
.plot ()

i in range (steps) :

#1f using camera uncomment next section

#check camera

urllib.request.urlretrieve ("http://192.168.1.184/capture",
image = prepare("latest.jpg")

prediction = model ([image])

prediction = list (prediction([0])
status = CATEGORIES |[prediction.index (max (prediction))]
pre status = copy.copy (status)

#increase speed

if status=="one" and speed wait<i:
V spli:]=V sp[i-1]+8.9408
V_sp incr[i:] = V_sp incr[i-1]+8.9408
speed wait = i+5/divisions
#stop sign
if status =="five":
V spli:] =0

speed wait = 1000
V_sp incr[i:]=0

19

"latest.jpg")

if status=="five" and V[i1]<0.01:
speed wait = i+3/divisions

#1f status=="five" and V[i]<0.01 and speed wait<i:
#V sp[i:] = V _sp incr[i:]

#pedestrian
if status == "three":

V spli:] =0

if status=="blank" and pre status=="three":
V sp[i:] = V_sp incrli:]

Iinput setpoint with deadband +/- DT

if Vv sp[i] == O:

band = 0.004
else:

band = 0.3
m.vel.SPHI = V _sp[i] + band
m.vel.SPLO = V_sp[i] - band
solve MPC

3

.solve (disp=False, debug=0)

#enter values from mpc to simulation
s.Tb.value = m.Tb.NEWVAL

s.Te.value = m.Te.NEWVAL

gas[i] = m.Te.NEWVAL
brake[i] = m.Tb.NEWVAL

#simulate
s.solve (disp=False, debug=0)

#take values from simualation into mpc
m.vel .MEAS = s.vel.model

#record values from sim
V[i] = s.vel.model

if i1%1==0:

if i<30/divisions:

start=0
else:

start=int (i-30/divisions)
#print ("status = ",status)

axl.clear ()
ax2.clear ()

20

ax3.clear ()

ax3.text (0.3,0.3,status, fontsize=50)
ax3.text (0,0, speed wait, fontsize=20)
ax3.text (0.2,0,1, fontsize=20)

axl.set xlabel("time [s]")

axl.set ylabel ("Velocity [mph]")

line2, = axl.plot(Time[start:i], V spl[start:i]*2.237,'--",
label="Velocity Setpoint")

linel, = axl.plot(Time[start:i], V[start:1]*2.237, label="Velocity")

axl.set ylim((0, None))

axl.legend(loc='upper left')

ax2.set xlabel ("time [s]")

ax2.set ylabel ("Pedal %")

linel, =ax2.plot(Time[start:i], gas[start:i]/Te_max*lOO, 'g-
', label='gas"')

line2, =ax2.plot(Time[start:i], brake[start:i]/Tb_max*lOO,'r—'
label="'brake')

ax2.set ylim((0, None))

ax2.legend(loc="upper left')

drawing updated values
figurel.canvas.draw ()
figure2.canvas.draw ()
figure3.canvas.draw ()

This will run the GUI event

loop until all UI events

currently waiting have been processed
figurel.canvas.flush events ()
figure2.canvas.flush events ()
figure3.canvas.flush events ()

21

