Model Predictive Control for Temperature Regulation

The purpose of this lab is to reinforce the concepts taught in class about dynamic process
models, estimation, and model predictive control. It involves real-time sensing and calculations
on an Arduino device that is a portable pocket-sized lab experiment.

Problem Statement

Model Predictive Control with an Empirical Model

1. Perform a doublet test on the system, varying the control output in manual mode. See the
exercise at http://apmonitor.com/do/index.php/Main/DataSimulation to download sample data.

2. From the manual-mode test calculate linear, first-order constants (z, Kp) fitting the data to
the equation 7, % = —x + Kpu.

3. Develop a model predictive controller based on the linear, first-order model.

4. Perform set point changes and introduce disturbances (blow on the thermistor) to test the
performance of the controller. Comment on the performance of the controller using the
empirically derived constants.

5. Tune the controller to improve performance.

Model Predictive Control with a First-Principles / Hybrid Model

1. Derive the form of a first principles model for the relationship between input voltage and
output temperature. There is no need to directly measure all parameters in the model; engineering
judgement is sufficient.

2. Simulate the first principles model and compare the results to the data that were collected
during the doublet test. Adjust the parameters in your model to align the model and measured
values.

3a. For linear MPC: Linearize the adjusted first principles model and compare it to the
empirical model. Comment on the similarities or differences between the two.

3b. For nonlinear MPC: Create a model predictive controller to adjust transistor voltage to
regulate temperaute.

4, Perform set point changes and introduce disturbances (blow on the thermistor) to test the
performance of the controller. Comment on the performance of the controller using the
empirically derived constants.

5. Tune the controller to improve performance.

http://apmonitor.com/do/index.php/Main/DataSimulation

Setup for the Temperature Control Device
1. Plug in power supply to electrical outlet and USB connection to UO Lab computer
2. Download required files from course website and extract files from zipped archive
3. Open PID_GUI.m from extracted folder (not zipped folder)

. apm 5/8/201510:03 AM File folder

. ArduinoCode 5/8/2015 8:53 AM File folder

. ArduinoDriver_ Windows 5/8/2015 8:53 AM File folder

. Collected Data 5/8/2015 11:05 AM File folder

. Excel FOPDT 5/8/2015 8:53 AM File folder

. FirstPrinciples 5/8/2015 8:53 AM File folder

. MatlabCode 5/8/2015 8:53 AM File folder
¥ control.apm 5/8/201510:53 AM APM File 1KB
8| control.csv 5/8/201510:22 AM CSV File 1KB
£ FApC.m 5/8/201511:03 AM MATLAB Code 2 KB
£ mpc_init.m 5/8/201510:59 AM MATLAB Code 2 KB
PID_GULm 5/8/2015 10:56 AM MATLAB Code 23 KB

4. Click the green Run button

EDITOR PUBLISH EELEDSs QKR
Find Files Insert el - 2 S
S5 g =5 i3 B s
| Compare ~ Comment % GoTo ~
New Open Save (1] Compa % il A Breakpoints Run Runand |- Agvance Runand
v v xSt v Indent [=| wif 7o (| Find = ~ Advance Time.
FiLE EDIT NAVIGATE | BREAKPGINTS RUN
| PID_GULm L+
(@ This file can be published to a formatted document. For more information, see the publishing video or help, x
1 funetion varargout = PID_GUI (varar gin) e
2 % PID GUI MATLAE code for PID_GUI.fig ral

Obtain a Dynamic Model from Step Test Data

1. Click the green Start button. - e
1. @ Manual

2. () PID Control

2. Once the module has initialized, select Manual mode.

3. (C) Custom Control
3. Aninput box will appear to allow changes to the input voltage. O“{ng\gg“;%ﬁ 150
4. Input manual values of output voltage to implement either a step, doublet, or PRBS input Caution!
. Unit is Hot!
signal to the Arduino device. The Enter key is required to implement a change. The Do not Touch!

temperature may take a couple minutes to reach a new steady state value.

5. When the test is complete, select Stop. -

6. Retrieve data from the Folder Collected Data. If multiple tests were performed, the data files are
named according to the test time stamp.

Determine a Linear, First-Order Model

Fit data to a FOPDT model using Excel, MATLAB, Python, or another analysis tool. There is an
Excel template in the folder Excel FOPDT. Values from the generated data should be copied
into the appropriate locations on the Excel worksheet as shown below.

Insert These Values

time Measured
0.01667 70 3.9885658
016667 70 4.0013333
0.31667 70 3.9986239
0.46667 70 3.99087149
0.61667| 70 I 3.9775104
0.76667 70 3.9935262

While it is not necessary to modify the columns that calculate the model mismatch, it may be
necessary to fill down the equations in these columns if the number of data points exceeds the
template default.

Dont change these columns, only copy down to match number of measurements |
Model Model Model

Model Slope Intercept with Delay abs(error) error®2
3.9885658 0 3.9885658 3.9885658 0 0
3.98856587 07 39885658 3.9885658 0.0127675 0.000163009
3.9885658" 07 3.9885658 3.9885658 0.0100581 0.000101164
3.9885658 7 07 39885658 3.9885658 0.0023061 &.3181E-06

Values of K, and t,, can be obtained by either manually changing the values in the parameters
section or using Excel Solver to find the values that minimize either the Sum of Squared Errors
or else the Sum of Absolute Errors.

Model Parameters FOPDT Model Fit
- ——Model
Kp [G?m} 0.135127622 ny 8 —ezmured
tau (Time Constant) 2.229643365 g 5
theta (Time Delay) 2 @ . ra . _
Doesn't seem to change with solver g \ r
2 2
£
Minimize Either of These £ 0 |
Sum of Squared Errors 157.5540833 o 20 40 60 80
Sum of Absolute Errors 154 7466485 Time (sec)

PID Controller Tuning

Once the linear, first order model (K, and 7,,) is determined, use tuning correlations to select acceptable
starting values for the PID controller (K, t;, and 7p).

1. Click the green Start button.

2. Select Control mode.

3. Enter Proportional (P), Integral (1), and Derivative (D) terms for the PID controller.
a. Proportional (P) = K,

b. Integral (I) = i
T
c. Derivative (D) = K. tp
4. Tune controller to achieve improved performance.
5. Select Stop when the test is complete.

6. Retrieve the saved data file from the Collected Data folder.

MPC Tuning (Custom Control Option)

Once the linear, first order model (K, and 7,,) is determined, implement the model in control.apm and
tune the controller in mpc_init.m to achieve acceptable performance.

Click the green Start button.
Select Control mode.
Enter controller setpoint.
Tune controller to achieve improved performance.
a. Common MV tuning parameters
i. COST = (+) minimize MV, (-) maximize MV
ii. DCOST = penalty for MV movement
iii. DMAX = maximum that MV can move each cycle
iv. FSTATUS = feedback status with 1=measured, 0=off
v. LOWER = lower MV bound
vi. MV_TYPE = MV type with O=zero-order hold, 1=linear interpolation
vii. STATUS =turn on (1) or off (0) MV
viii. UPPER = upper MV bound
b. Common CV tuning parameters
i. COST = (+) minimize MV, (-) maximize MV
ii. CV_TYPE = CV type with 1=£,-norm, 2=squared error
iii. FSTATUS = feedback status with 1=measured, O=off
iv. SP = setpoint with CV_TYPE =2
v. SPLO = lower setpoint with CV_TYPE =1
vi. SPHI = upper setpoint with CV_TYPE =1
vii. STATUS =turn on (1) or off (0) MV
viii. TR_INIT = trajectory type, O=dead-band, 1,2=trajectory
iX. TR_OPEN = opening at initial point of traj compared to end
5. Select Stop when the test is complete.
6. Retrieve the saved data file from the Collected Data folder.

M ow DR

