
1

Model Predictive Control for Temperature Regulation

The purpose of this lab is to reinforce the concepts taught in class about dynamic process

models, estimation, and model predictive control. It involves real-time sensing and calculations

on an Arduino device that is a portable pocket-sized lab experiment.

Problem Statement

Model Predictive Control with an Empirical Model

1. Perform a doublet test on the system, varying the control output in manual mode. See the

exercise at http://apmonitor.com/do/index.php/Main/DataSimulation to download sample data.

2. From the manual-mode test calculate linear, first-order constants (p, Kp) fitting the data to

the equation 𝜏𝑝
𝑑𝑥

𝑑𝑡
= −𝑥 + 𝐾𝑝𝑢.

3. Develop a model predictive controller based on the linear, first-order model.

4. Perform set point changes and introduce disturbances (blow on the thermistor) to test the

performance of the controller. Comment on the performance of the controller using the

empirically derived constants.

5. Tune the controller to improve performance.

Model Predictive Control with a First-Principles / Hybrid Model

1. Derive the form of a first principles model for the relationship between input voltage and

output temperature. There is no need to directly measure all parameters in the model; engineering

judgement is sufficient.

2. Simulate the first principles model and compare the results to the data that were collected

during the doublet test. Adjust the parameters in your model to align the model and measured

values.

3a. For linear MPC: Linearize the adjusted first principles model and compare it to the

empirical model. Comment on the similarities or differences between the two.

3b. For nonlinear MPC: Create a model predictive controller to adjust transistor voltage to

regulate temperaute.

4. Perform set point changes and introduce disturbances (blow on the thermistor) to test the

performance of the controller. Comment on the performance of the controller using the

empirically derived constants.

5. Tune the controller to improve performance.

http://apmonitor.com/do/index.php/Main/DataSimulation

2

Setup for the Temperature Control Device
1. Plug in power supply to electrical outlet and USB connection to UO Lab computer

2. Download required files from course website and extract files from zipped archive

3. Open PID_GUI.m from extracted folder (not zipped folder)

4. Click the green Run button

Obtain a Dynamic Model from Step Test Data

1. Click the green Start button.

2. Once the module has initialized, select Manual mode.

3. An input box will appear to allow changes to the input voltage.

4. Input manual values of output voltage to implement either a step, doublet, or PRBS input

signal to the Arduino device. The Enter key is required to implement a change. The

temperature may take a couple minutes to reach a new steady state value.

5. When the test is complete, select Stop.

6. Retrieve data from the Folder Collected Data. If multiple tests were performed, the data files are

named according to the test time stamp.

3

Determine a Linear, First-Order Model

Fit data to a FOPDT model using Excel, MATLAB, Python, or another analysis tool. There is an

Excel template in the folder Excel_FOPDT. Values from the generated data should be copied

into the appropriate locations on the Excel worksheet as shown below.

While it is not necessary to modify the columns that calculate the model mismatch, it may be

necessary to fill down the equations in these columns if the number of data points exceeds the

template default.

Values of 𝐾𝑝 and 𝜏𝑝 can be obtained by either manually changing the values in the parameters

section or using Excel Solver to find the values that minimize either the Sum of Squared Errors

or else the Sum of Absolute Errors.

PID Controller Tuning

Once the linear, first order model (𝐾𝑝 and 𝜏𝑝) is determined, use tuning correlations to select acceptable

starting values for the PID controller (𝐾𝑐, 𝜏𝐼, and 𝜏𝐷).

1. Click the green Start button.

2. Select Control mode.

3. Enter Proportional (P), Integral (I), and Derivative (D) terms for the PID controller.

a. Proportional (P) = 𝐾𝑐

4

b. Integral (I) =
𝐾𝑐

𝜏𝐼

c. Derivative (D) = 𝐾𝑐𝜏𝐷

4. Tune controller to achieve improved performance.

5. Select Stop when the test is complete.

6. Retrieve the saved data file from the Collected Data folder.

MPC Tuning (Custom Control Option)

Once the linear, first order model (𝐾𝑝 and 𝜏𝑝) is determined, implement the model in control.apm and

tune the controller in mpc_init.m to achieve acceptable performance.

1. Click the green Start button.

2. Select Control mode.

3. Enter controller setpoint.

4. Tune controller to achieve improved performance.

a. Common MV tuning parameters

i. COST = (+) minimize MV, (-) maximize MV

ii. DCOST = penalty for MV movement

iii. DMAX = maximum that MV can move each cycle

iv. FSTATUS = feedback status with 1=measured, 0=off

v. LOWER = lower MV bound

vi. MV_TYPE = MV type with 0=zero-order hold, 1=linear interpolation

vii. STATUS = turn on (1) or off (0) MV

viii. UPPER = upper MV bound

b. Common CV tuning parameters

i. COST = (+) minimize MV, (-) maximize MV

ii. CV_TYPE = CV type with 1=ℓ1-norm, 2=squared error

iii. FSTATUS = feedback status with 1=measured, 0=off

iv. SP = setpoint with CV_TYPE = 2

v. SPLO = lower setpoint with CV_TYPE = 1

vi. SPHI = upper setpoint with CV_TYPE = 1

vii. STATUS = turn on (1) or off (0) MV

viii. TR_INIT = trajectory type, 0=dead-band, 1,2=trajectory

ix. TR_OPEN = opening at initial point of traj compared to end

5. Select Stop when the test is complete.

6. Retrieve the saved data file from the Collected Data folder.

