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Introduction

Jet engines are utilized in an increasing number of applications, from power generation to propulsion.
One of the biggest concerns in the design of a jet engine is the efficiency of the compressor. The
compressor adds work to an airflow, increasing Compressor Turbine Niszsla
both its pressure and temperature. The air enters
the combustor after the compressor, which further
increases the temperature. The heated air then

passes through a turbine which extracts enough
energy to power the compressor, and the
remainder of the energy in the air is transformed

into thrust via a nozzle (see Figure 1). The

Combustion  Shaft
efficiency of a compressor determines how much chamber

energy is left after the turbine to become thrust, Figure 1-Cross Section of a Turbojet
and so very strongly affects the maximum thrust
that a jet engine can produce.

The efficiency of a compressor is
determined by the shape of the blades
that make up the compressor and the
relation of the different rows of blades
to each other. Each row of rotors is
turning very quickly, which causes the

air to turn as it passes through each.
f Rotor re Stator se After each rotor row is a row of
stators whose main purpose is to

Figure 2-Rotor/Stator Blade Cascade straighten the flow so that the next
row of rotors can work as efficiently as
possible (see Figure 2). Each row of blades can be rotated to provide a better angle to the flow and a
better efficiency.

Theory

While true compressor optimization takes years of training and a large amount of time, a basic problem
can be formulated which simplifies the governing principles. For this problem, we assume that every



blade in the compressor has a constant cross-section. We will use the NACA 4212 airfoil as the specified
cross section. Each blade row will have the same number of blades, and will be similar in every respect
except for the direction they are turned in. The formulation for this problem follows.
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This is the governing equation for efficiency. The flow coefficient (¢) is defined as
C
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Where C, is the axial velocity through the compressor (¢, = ﬁ) and U is the rotor velocity (U = Rw)
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with R as the mean radius of the blade row and w as the rotational speed of the blade row. €, and ¢,
are characteristics of individual blades (r for the rotor, s for the stator), defined as
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Cp and C, are the coefficients of drag and lift. Calculating the coefficients of drag and lift requires very
advanced math and a highly detailed understanding of the geometry of the airfoil, and so they are
generally found experimentally, as some relation to the angle of attack of the blade (AA). Values for the
coefficients of lift and drag are found in Figures 3 and 4. (You will have to extract data points and fit a
curve to them in order to make an equation and calculate these values.)
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Figure 3-Coefficient of Lift vs. Angle of Attack Figure 4-Coefficient of Drag vs. Coefficient of Lift

Percent Reaction (%R) is defined as

%R = ————
¢z —cf
Wy —W;
where C,, C;, W, , and W, are components of a velocity triangle. These values are calculated mainly
using trigonometry, and a brief explanation is included here.



Rotational
Velocity

U=Rw v

Air generally enters a compressor at some angle a,; and velocity C,. However, because of the rotational

velocity of the rotor blades, U, the blade actually sees some other angle B, and velocity W;. The axial
component of both of these velocities is the overall axial velocity of the compressor (which is constant
due to conservation of mass, since we have no change in area for the blade rows in this problem). As
long as a3, U, and the axial velocity can be found, the rest of the triangle can be created through simple
trigonometry. We assume that the axial velocity stays constant through the compressor, and the
rotational speed will of course stay constant across a single blade. With those two quantities known,
the only other component needed is one of the angles of the triangle. This can be found with the
turning angle of the rotor blade &.

B2 = PB1 + 6
assuming that B; has properly been defined as a negative value. The development of the equations to
find the velocity triangles for the stator is very similar. The absolute velocity and angle the flow leaving
the rotor defines the absolute angle and velocity of the flow entering the stator. Again, the axial velocity
has to remain constant in order to conserve mass through the compressor. The relation between the
entry and exit angle for the stator is defined as

a, = a; —
Both values of a should be positive in this relation. Once the velocity and angle at the stator exit are
calculated, these become the inputs for the next row of rotor blades, which continues through as many
blade rows as the compressor contains.
One point to be cautious of is that the rotor blades should not break the sound barrier, as this puts them
under undue stress and can cause premature failure of the compressor. The speed of sound is defined

asa = ,/y * R * T;,, where R is the gas constant of air and y is the ratio of specific heats in air

You will optimize the efficiency of a 3 stage compressor using the following parameters:

P, = 272 psia 6,=19° Subject To:

Tin=1310R 6,=22° 200 Ibm/s < m <500 Ibm/s
Rimean, blade row = 13.2 in. AAR1 =0° 5000 rpm < w < 15000 rpm
Tolade row = 1.24 in. y=14 0° < AA (all) £ 15°

a, =15° R = 1716 ft*Ibf/slug*R Wl(rotor 1)< a



