
  Chapter 2: Modeling Concepts 

  1 

CHAPTER 2 

MODELING CONCEPTS 

1 Introduction 

As was discussed in the previous chapter, in order to apply optimization methods we must 
have a model to optimize. As we also mentioned, obtaining a good model of the design 
problem is the most important step in optimization. In this chapter we discuss some modeling 
concepts that can help you develop models which can successfully be optimized. We also 
discuss the formulation of objectives and constraints for some special situations. We look at 
how graphics can help us understand the nature of the design space and the model. We end 
with an example optimization of a heat pump. 

2 Physical Models vs. Experimental Models 

Two types of models are often used with optimization methods: physical models and 
experimental models. Physical models are based on the underlying physical principles that 
govern the problem. Experimental models are based on models of experimental data. Some 
models contain both physical and experimental elements. We will discuss both types of 
models briefly. 

2.1 Physical Models 

Physical models can be either analytical or numerical in nature. For example, the Two-bar 
truss is an analytical, physical model. The equations are based on modeling the physical 
phenomena of stress, buckling stress and deflection. The equations are all closed form, 
analytical expressions. If we used numerical methods, such as the finite element method, to 
solve for the solution to the model, we would have a numerical, physical model. 

2.2 Experimental Models 

Experimental models are based on experimental data. A functional relationship for the data is 
proposed and fit to the data. If the fit is good, the model is retained; if not, a new relationship 
is used. For example if we wish to find the friction factor for a pipe, we could refer to the 
Moody chart, or use expressions based on a curve fit of the data. 
 

3 Modeling Considerations 

3.1 Making the Model Robust 

During optimization, the algorithms will move through the design space seeking an optimum. 
Sometimes the algorithms will generate unanticipated designs during this process. To have a 
successful optimization, the model must be able to handle these designs, i.e. it must be 
robust. Before optimizing, you should consider if there are there any designs for which the 
model is undefined.  If such designs exist, you need to take steps to insure either that 1) the 
optimization problem is defined such that the model will never see these designs, or 2) the 
model is made “bulletproof” so it can survive these designs. 
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For example, for the Two-bar truss, the truss becomes undefined if the diameter or thickness 
go to zero.  Although unlikely to ever happen, we can insure this does not occur by defining 
non-zero lower bounds for these variables—the algorithms should never violate upper or 
lower bounds. (This is not true of constraints, however, which the algorithms sometimes will 
violate during the search.) 
 
The above case seems a little farfetched, in that truss with a zero thickness or diameter would 
not make any sense. However, sometimes models can crash for designs that do make sense. 
Example 3.1.1 presents such a case. 

3.1.1 Example: Log mean temperature difference 

In the design of a shell and tube heat exchanger, the average temperature difference across 
the exchanger is given by the log mean temperature difference: 
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where )( 22 ch TT  is, for example, the difference in the temperature of the hot and cold fluids 

at one end of the exchanger, denoted by subscript 2.  This difference is sometimes called the 
“temperature of approach.”  A perfectly legitimate case is to have the temperature of 
approach at both ends of the exchanger be the same, i.e., 
 
  )()( 1122 chch TTTT   (2.2) 
 
in which case the denominator becomes ln[1] = 0, and the expression is undefined. 
It turns out in this case the appropriate expression for the temperature difference is the 
“arithmetic mean temperature difference”: 
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How would you handle this as part of your computer model? You would implement this as 
an IF ELSE statement. If the absolute value of the difference of the two temperatures of 
approach were below some tolerance, the arithmetic temperature difference would be used 
instead of the log mean temperature difference. This would prevent the model from crashing. 
The example of a heat pump at the end of this chapter implements this strategy. 
 
Sometimes the values passed to the model, even though within the bounds, do not make 
sense. For example, if the wire diameter of a spring were more than ½ the coil diameter, as 
illustrated in the figure below, the spring could not be physically be realized. Since it is 
unlikely this would represent an optimum design, the model just needs to be able to compute 
some sort of values without crashing and thereby halting execution. The algorithms will 
move away from this design as the optimization proceeds. 
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 (a)     (b) 

Fig. 2.1 Cross section of a spring. (a) Wire diameter, d, is reasonable relative to coil 
diameter, D. (b) Wire diameter is not reasonable relative to coil diameter.  

 
One apparently obvious way to prevent something like this from happening is to include a 
constraint that restricts the relative sizes of the wire (d) and coil diameters (D), e.g. 
 
  Dd 3.02   (2.4) 
 
Often including such constraints will suffice. However it should be noted that some 
optimization algorithms will violate constraints during a search, so this may not always 
work. 
 
Finally, some models are just inherently fragile. For certain combinations of variables, the 
models do not converge or in some manner fail. If the model cannot easily be made more 
robust, then the following strategy can be used. 
 
If a design is passed in from the optimization software for which the model cannot compute 
some functions, that design is intercepted at some appropriate point inside the model, and a 
penalty function is passed back in place of the actual objective (with reasonable values given 
to constraints). The penalty function value is high enough (assuming we are minimizing) that 
the algorithms will naturally move away from the point that is causing trouble.  
 
If we are using an unconstrained algorithm on a constrained problem, the penalty function 
often is composed of the objective and a penalty proportional to the violation of the 
constraints: 
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where iK  is a large constant, ig is the value of the constraint violation, and the subscript i 

only goes over the violated constraints. 
 
The important point to note is that the model needs to be able to survive such designs, so the 
optimization can proceed.  

D 

d 
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3.2 Making Sure the Model is Adequate 

Engineering models always involve assumptions and simplifications. An engineering model 
should be as simple as possible, but no simpler. If the model is not adequate, i.e., does not 
contain all of the necessary physics, the optimization routines will often exploit the 
inadequacy in order to achieve a better optimum. Obviously such an optimum does not 
represent reality.  
 
For example, in the past, students have optimized the design of a bicycle frame. The 
objective was to minimize weight subject to constraints on stress and column buckling. The 
optimized design looked like it was made of pop cans: the frame consisted of large diameter, 
very thin wall tubes. The design satisfied all the given constraints.  
 
The problem, however, was that the model was not adequate, in that it did not consider local 
buckling (the type of buckling which occurs when a pop can is crushed). For the design to be 
realistic, it needed to include local buckling. 
 
Another example concerns thermal systems. If the Second Law of Thermodynamics is not 
included in the model, the algorithms might take advantage of this to find a better optimum 
(you can achieve some wonderful results if the Second Law doesn’t have to be obeyed!). For 
example, I have seen optimal solutions which were excellent because heat could flow 
“uphill,” i.e. against a temperature gradient. 

3.3 Testing the Model Thoroughly 

The previous two sections highlight the need for a model which will be optimized to be 
tested thoroughly. The model should first be tested at several points for which solutions (at 
least “ballpark solutions”) are known. The model should then be exercised and pushed more 
to its limits to see where possible problems might lie. 

3.4 Reducing Numerical Noise 

Many engineering models are noisy.  Noise refers to a lack of significant figures in the 
function values.  Noise often results when approximation techniques or numerical methods 
are used to obtain a solution.  For example, the accuracy of finite element methods depends 
on the “goodness” of the underlying mesh.  Models that involve finite difference methods, 
numerical integration, or solution of sets of nonlinear equations all contain noise to some 
degree.  It is important that you recognize that noise may exist.  Noise can cause a number of 
problems, but the most serious is that is may introduce large errors into numerical 
derivatives. I have seen cases where the noise in the model was so large that the derivatives 
were not even of the right sign. 
 
A discussion of the effect of noise and error on derivatives is given in Section 7. 
 
Sometimes you can reduce the effect of noise by tightening convergence tolerances of 
numerical methods. 
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4 Proper Scaling of the Model Variables and Functions 

Optimization algorithms can perform much better when functions and variables have been 
scaled to all be on the same order of magnitude.  OptdesX uses the minimum and maximum 
bounds on variables to scale them to be between -1 and +1, using the equations, 
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In general, you should pick bounds which are as tight as possible. If during an optimization a 
lower or upper bound is reached (and it was set somewhat arbitrarily), it can always be 
relaxed. 
 
Likewise, functions are also scaled to be on the order of 1 using the allowable and 
indifference values, 
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Since a derivative involves both functions and variables, it is affected by the scaling of both, 
according to the relationship, 
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The OptdesX algorithms work with scaled values only.  Scaling is important!  Improperly 
scaled functions or variables may cause premature algorithm termination.   When the 
problem is properly scaled, the gradients should all be roughly the same order of magnitude. 
 
As shown in Fig. 2.2, we can view gradients using the Gradients window. 
 

 
Fig. 2.2 Gradients Window 
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The unscaled gradients for the Two-bar Truss are given in Fig. 2.3: 
 

 
Fig. 2.3. Unscaled gradients for the Two-bar Truss 
 
Note the unscaled gradients differ by about five orders of magnitude. In terms of 
optimization, this may cause some variables and/or functions to overly dominate the 
optimization search with the end result the optimum is not found. 
 
The scaled gradients are shown in Fig. 2.4, 

 
Fig. 2.4. Scaled gradients for the Two-bar Truss. 
 
We see that the gradients are now all the same order of magnitude. This will facilitate the 
optimization search. 
 
Scaling of functions, variables and derivatives does not change the solution to the 
optimization problem. Rather what we are doing is picking a different set of units (obviously 
we could calculate weight in grams or pounds and it shouldn’t make a difference to the 
solution). In reality we have non-dimensionalized the problem so that all functions, variables 
and derivatives have similar magnitudes. 
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5 Formulating Objectives 

5.1 Single Objective Problems 

Most optimization problems, by convention, have one objective. This is at least partially 
because the mathematics of optimization were developed for single objective problems. 
Multiple objectives are treated briefly in this chapter and more extensively in Chap. 5. 
 
Often in optimization the selection of the objective will be obvious: we wish to minimize 
pressure drop or maximize heat transfer, etc. However, sometimes we end up with a 
surrogate objective because we can’t quantify or easily compute the real objective. 
 
For example, it is common in structures to minimize weight, with the assumption the 
minimum weight structure will also be the minimum cost structure. This may not always be 
true, however. (In particular, if minimum weight is achieved by having every member be a 
different size, the optimum could be very expensive!) Thus the designer should always keep 
in mind the assumptions and limitations associated with the objective of the optimization 
problem. 
 
Often in design problems there are other objectives or constraints for the problem which we 
can’t include. For example, aesthetics or comfort are objectives which are often difficult to 
quantify. For some products, it might also be difficult to estimate cost as a function of the 
design variables. 
 
These other objectives or constraints must be factored in at some point in the design process. 
The presence of these other considerations means that the optimization problem only 
partially captures the scope of the design problem. Thus the results of an optimization should 
be considered as one piece of a larger puzzle. Usually a designer will explore the design 
space and develop a spectrum of designs which can be considered as final decisions are 
made. 

5.2 Special Objectives: Error Functions 

Consider the four bar linkage shown in the Fig. 2.5a below (from Optimization Methods for 
Engineering Design,  R.L. Fox, Addison Wesley, 1971). We would like the linkage to follow 
a particular path as given by the solid in line in Fig. 2.5b. The actual output of a particular 
design is given by the dashed line. In this case we would like to design a linkage such that 
the generated output and the desired out put match as closely as possible. 
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Fig 2.5 a) A four bar linkage. After Fox.  b) Desired output vs. generated output 

 
A question arises as to what the objective function should be. We need an objective which 
provides a measure of the error between the desired and actual output. The optimization 
algorithms would then try to reduce this error as much as possible. One such error function 
would be,   
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Squaring the difference in the above expression insures that the error accumulates whether 
positive or negative. Other error functions are also possible, such as an actual integration of 
the area between the two curves. If it is more important that the error be small for some parts 
of the range, we can add a weighting function, 
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Where )(w has higher values for the more important parts of the range. (Often weighting 
functions are constructed so the weights sum to 1.) 
 
Error functions such as this are relatively common in engineering optimization. You should 
pay particular attention to scaling of an error function, as it is possible for a function such as 
this to vary over several orders of magnitude from the starting point to the optimum. 
Sometimes scaling which is appropriate at the start needs to be revised closer to the 
optimum. 
 

5.3 Special Objectives: Economic Objective Functions 

One type of optimization looks at the trade-off between capital costs made now, and savings 
resulting from the capital cost which occur later. For example, we could purchase a heat 
pump now (the capital cost) in order to save energy for a number of years. Typically the 
more expensive the heat pump is, the more energy we will save. We are interested in 
determining the optimal size of the heat pump that results in the best economic results. 
 



  Chapter 2: Modeling Concepts 

  9 

To do this properly we must take into account the time value of money. The fact that money 
earns interest means that one dollar today is worth more than one dollar tomorrow. If the 
interest rate is 5%, compounded annually, $1.00 today is the same as $1.05 in one year. If 
expenses and/or savings are made at different times, we must convert them to the same time 
to make a proper comparison. This is the subject for engineering economics, so we will only 
briefly treat the subject here. 
 
One approach to examining the economics of projects is called net present value (NPV). For 
this approach, all economic transactions are converted to equivalent values in the present. In 
general, outflows (expenses) are considered negative; inflows (savings or income) are 
considered positive. There are two formulas which will be useful to us. 
 
The present value of one future payment or receipt, F, at period n with interest rate i is,  
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This equation allows us to convert any future value to the present. This might not be very 
convenient, however, if we have many future values to convert, particularly if we have a 
series of uniform payments. The present value of a series of uniform amounts, A, where the 
first payment is made at the end of the first period is given by, 
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5.3.1 Example: Net Present Value of Heat Pump 

Suppose you can buy a heat pump for $50,000. The pump is estimated to save $12,000 per 
year for the five year life of the pump. An interest rate of 10% is assumed. Is the heat pump a 
good investment? 
 
A time line showing the money flow rates is given below (size of arrows not to scale).  
 

$50,000

$12,000

 
Fig. 2.6. Money flow rates for heat pump. 

 
The initial expense of the pump, $50,000, is already in the present, so this does not need to 
be changed. It will be considered negative, however, since it is money paid out. 
 
The present value of the savings is given by, 
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Since the Net Present Value is negative, this is not a good investment. This result might be a 
little surprising, since without taking into account the time value of money, the total savings 
is 5*$12,000 = $60,000. However, at 10% interest, the value of the savings, when brought 
back to the present, does not equal the value of the $50,000 investment. This means we 
would be better off investing the $50,000 at 10% than using it to buy the heat pump. 
 
Note that (2.13) above assumes the first $12,000 of savings is realized at the end of the first 
period, as shown by the timeline for the example. 
 
When used in optimization, we would like to maximize net present value. In terms of the 
example, as we change the size of the heat pump (by changing, for example, the size of the 
heat exchangers and compressor), we change the initial cost and the annual savings. 
 
Question: How would the example change if the heat pump had some salvage value at the 
end of the five years? 
 

6 Formulating Constraints 

6.1 Inequality and Equality Constraints 

Almost all engineering problems are constrained. Constraints can be either inequality 
constraints ib  or ib ) or equality constraints ( ib ). The feasible region for inequality 

constraints represents the entire area on the feasible side of the allowable value; for equality 
constraints, the feasible region is only where the constraint is equal to the allowable value 
itself.  
 
Because equality constraints are so restrictive, they should be avoided in optimization 
models whenever possible (an exception would be linear constraints, which are easily 
handled). If the constraint is simple, this can often be done by solving for the value of a 
variable explicitly. This eliminates a design variable and the equality constraint from the 
problem. 
 

6.1.1 Example: Eliminating an Equality Constraint 

Suppose we have the following equality constraint in our model, 
 
 2 2

1 2 10x x   (2.14) 
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Where 1x and 2x  are design variables. How would we include this constraint in our 

optimization model? 
 
We have two choices. The choices are mathematically equivalent but one choice is much 
easier to optimize than the other. 
 
First choice: Keep 1x and 2x  as design variables. Calculate the function, 

 
 2 2

1 2g x x   (2.15) 

 
Send this analysis function to the optimizer, and define the function as an equality constraint 
which is set equal to 10. 
 
Second choice: Solve for 1x  explicitly in the analysis model, 

 

 2
1 210x x   (2.16) 

 
This eliminates 1x  as a design variable (since its value is calculated, it cannot be adjusted 

independently by the optimizer) and eliminates the equality constraint. The equality 
constraint is now implicitly embedded in the analysis model. 
 
Which choice is better for optimization? The second choice is a better way to go hands 
down: it eliminates a design variable and a highly restrictive equality constraint. The second 
choice results in a simpler optimization model. 
 
In one respect, however, the second choice is not as good: we can no longer explicitly put 
bounds on 1x  like we could with the first choice. Now the value of 1x  is set by (2.16); we can 

only control the range of values indirectly by the upper and lower bounds set for 2x . (Also, 

we note we are only taking the positive roots of 1x . We could modify this, however.)   

6.2 Constraints Where the Allowable Value is a Function 

It is very common to have constraints of the form: 
 
 Stress ≤ Buckling Stress (2.17) 
 
Most optimization routines, however, cannot handle a constraint that has a function for the 
right hand side.  This is easily remedied by rewriting the function to be, 
 
 Stress – Buckling Stress ≤ 0 (2.18) 
 
In OptdesX, this mapping can be done two ways: in your analysis routine you can create a 
function which computes stress minus buckling stress, or you can make the mapping directly 
in the OptdesX interface: 
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Fig. 2.7. Mapping two analysis functions to become one design function in OptdesX 

6.3 Constraint with Two Allowable Values 

Constraints sometimes also have upper and lower allowable values: 
 
 4 ≤ DiameterRatio ≤ 16 (2.19) 
 
We will break this into two constraints: 
 
 DiameterRatio ≤ 16 
 DiameterRatio ≥ 4 
 
In OptdesX this is accomplished by mapping the analysis function twice: 
  

 
Fig. 2.8. Mapping one analysis function to become two constraints. 

6.4 Taking the Maximum of a Group of Functions 

Sometimes we would like to reduce the size of a problem by combining several constraints 
together.  For example, in a finite element model, it is expensive to place a stress constraint 
on every element.  One possibility is to group a block of elements together and take the 
maximum stress over the group.  In OptdesX:  
 

  
Fig. 2.9. Taking the maximum of several functions to become one constraint. 

However, the Max function has a drawback in that it will not be differentiable when the max 
value changes from one analysis function to another. Usually, however, the optimization 
algorithms can skip over this discontinuity. 

6.5 Parametric Constraints 

Suppose we have a truss where the load acts within some envelope, as shown in Fig. 2.10 
below (from Optimization Methods for Engineering Design,  R.L. Fox, Addison Wesley, 
1971). 
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Fig. 2.10. A three-bar truss with a parametric load, after Fox. 
 
The load can act in any direction; the magnitude is a function of  
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Thus the stress constraint becomes: 
 
 Stress() < Sy 0 ≤   ≤ 2  

Fox refers to this as a parametric constraint.  How would we evaluate this type of constraint? 
 
As you may have guessed, we would use a loop inside our analysis routine. We would loop 
through values of theta and keep track of the highest value of stress. This is the value which 
would be sent to the optimizer. Psuedo-code for the loop would be something like (where we 
assume theta is in degrees and is incremented by two degrees each time through the loop), 
 
 maxstress = 0.0; 
 For (theta = 0; theta <= 360; theta += 2.0;) { 
    stress = (calculate stress); 
    If (stress >> maxstress ) maxstress = stress; 
 } 
 

7 Accurate Numerical Derivatives 

In Section 2 we looked at how scaling can affect the values of derivatives.  We noted it is 
advantageous for derivatives to be the same order of magnitude when optimizing. This is 
equivalent to selecting an optimum set of units for our variables. We also mentioned that 
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noise in the model can introduce error into derivatives. In this section we will look carefully 
at errors in numerical derivatives and learn how to reduce them.  This is crucial if we expect 
a successful optimization. 

7.1 Truncation Error 

Most of the time we obtain derivatives numerically. An exception is structural optimization, 
where some packages support the calculation of analytical derivatives directly from the finite 
element results.  The most common numerical method is forward difference.  The error 
associated with this method can be derived from a Taylor Expansion.  For a function of only 
one variable: 

    
2

2
2

1

2

df d f
f x x f x x x

dx dx
         (2.22)  

 
Solving for the derivative: 
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If we approximate the derivative as, 
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then we see we have a truncation error of  
2
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1
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  which is proportional to x.  Thus 

to reduce this error, we should make x small. 
 
We can also derive a central difference derivative: 
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Subtracting the second expression from the first, 
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Solving for the derivative, 
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If we approximate the derivative as, 
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then the truncation error is 
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Assuming x  < 1.0, the central difference method should have less error than the forward 
difference method. For example, if x = 0.01, the truncation error for the central difference 
derivative should be proportional to 2(0.01) 0.0001 . 
 
If the error of the central difference method is better, why isn’t it the default? Because there 
is no free lunch! The central difference method requires two functions calls per derivative 
instead of one for the forward difference method. If we have 10 design variables, this means 
we have to call the analysis routine 20 times (twice for each variable) to get the derivatives 
instead of ten times. This can be prohibitively expensive. 

7.2  Round-off Error 

Besides truncation error, we also have round-off error.  This is error associated with the 
number of significant figures in the function values.  Returning to our expression for a 
forward difference derivative, 
 

 
    2

2

1

2

f x x f xdf d f
x

dx x dx

     
   


 (2.30) 
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2

2 1

2

f x x f xdf d f
x

dx x x dx

  
    

 
  (2.31) 

 
where  represents the error in the true function value caused by a lack of significant 

figures. 
 
Recall that the true derivative is, 
 

 
    2

2

1

2

f x x f xdf d f
x

dx x dx

  
   


   (2.32) 

 
but we are estimating it as, 
 

 
    2f x x f xdf

dx x x

  
 

 
 (2.33) 

 
where this last term is the round-off error.  The total error is therefore, 
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2

2

2 1

2

d f
x

x dx


  


  (2.34) 

 
Thus we have two competing errors, truncation error and round-off error. To make truncation 
error small, x should be small; to reduce round-off error, x should be large. We will have 
to compromise. 

7.3 Example of Truncation Error 

We wish to compute the derivatives of the function 3 1 2( )f x x x   at the point 3x  . 
 
The true derivative at this point is 27.2886751. 
With a forward difference derivative and 0.01x  , 
 

   3 0.01 3 29.0058362 28.7320508
27.37385

0.01 0.01

f fdf

dx

  
    

 
The absolute value of error is 0.08512. 
 
Now suppose we use x = 0.01 with a central difference derivative: 
 

   3 0.01 3 0.01 29.0058362 28.4600606
27.28878

2*0.01 0.02

f fdf

dx

   
    

 
The absolute error has decreased to 0.000105 

7.4 Example of Truncation and Round-off Error 

Suppose, because of the type of model we have, we only have five significant figures for our 
data.  Thus instead of 29.0058362, we really only have 29.006-----, where even though other 
digits are reported, they are only numerical noise. (Note we have rounded here—we might 
also specify chopping.) 
 
With x = 0.01, 
 

 
   3 0.01 3 29.006 28.732

27.4000000
0.01 0.01

f fdf

dx

  
    

 
The absolute error has increased to 0.1113 
 
Lets try a whole range of x’s: 
 

x Error 
1.0 9.98 
0.1 0.911 

0.01 0.1113 
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0.001 0.2887 
0.0001 2.7113 

0.00001 27.728 
 
If we plot this data, 
 

Truncation and Derivative Error

0

10

20

30

-6 -5 -4 -3 -2 -1 0 1

Log Forward Difference Perturbation

A
b

so
lu

te
 D

er
iv

at
iv

e 
E

rr
o

r

 
Fig. 2.11. Plot of total error for example 

 
As we expected, we see that the data have a “U” shape. At small perturbations, round-off 
error dominates. At large perturbations, truncation error dominates. There is an optimal 
perturbation that gives us the minimum error in the numerical derivative. 
 
Usually we don’t know the true value of the derivative so we can’t easily determine the 
optimal perturbation. However, understanding the source and control of errors in these 
derivatives can be very helpful. If we suspect we have a noisy model, i.e. we don’t have very 
many significant figures in our functions, we use a central difference method with a large 
perturbation. The large perturbation helps reduce the effects of noise, and the central 
difference method helps control the truncation error associated with a large perturbation. In 
OptdesX, where derivatives are scaled, we recommend a perturbation of 0.01 for noisy 
models instead of 0.0001, the default, along with the central difference method. 

7.5 Partial Derivatives 

The concepts of the preceding sections on derivatives extend directly to partial derivatives. If 
we had, for example, two variables, 1 2andx x , a finite forward difference partial derivative, 

1

f

x




, would be given by, 

 

1 1 2 1 2

1 1

( , ) ( , )f x x x f x xf

x x

  


 
 (2.35) 
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Note that only 1x  is perturbed to evaluate the derivative. This variable would be set back to 

its base value and 2x  perturbed to find 
2

f

x




. 

In a similar manner, a central difference partial derivative for 
1

f

x




would be given by, 

 

1 1 2 1 1 2

1 1

( , ) ( , )

2

f x x x f x x xf

x x

   


 
 (2.36) 

 

8 Interpreting Graphics 

This section may seem a disconnected subject—interpreting graphs of the design space. 
However graphs of the design space can tell us a lot about our model. If we can afford the 
computation, it can be very helpful to look at graphs of design space. 
 
OptdesX supports two basic types of plots: sensitivity plots (where functions are plotted with 
respect to one variable) and contour plots (where functions are plotted with respect to two 
variables). To create a sensitivity plot, one variable is changed at equal intervals, according 
to the number of points specified, and the analysis routine is called at each point. If ten points 
are used, the analysis routine is called ten times. The function values are stored in a file—this 
file is then graphed. 
 
To create a contour plot, two variables are changed at equal intervals (creating a mesh in the 
space) and the values stored in a file. If ten points are used for each variable, the analysis 
routine is called 100 times. 
 
Some points to remember:  

•Use graphs to help you verify your model.  Do the plots make sense? 
 
•Graphs can provide additional evidence that you have a global optimum. If the contours 
and constraint boundaries are smooth and relatively linear, then there are probably not a lot 
of local optima.  Remember, though, you are usually only looking at a slice of design 
space. 
 
•When you generate a contour plot, remember that all variables except the two being 
changed are held constant at their current values.  Thus if you wish to see what the design 
space looks like around the optimum, you must be at an optimum. 
 
•Graphs can often show why the algorithms may be having trouble, i.e. they can show that 
the design space is highly nonlinear, that the feasible region is disjoint, that functions are 
not smooth, etc. 
 
•Graphs are interpolated from an underlying mesh.  Make sure the mesh is adequate.  The 
mesh must be fine enough to capture the features of the space (see example in manual pg 
10-9 to 10-10).  Also, you need to make sure that the ranges for the variables, set in the 
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Explore window, are such that the designs are meaningful.  In some cases, if the ranges are 
not appropriate, you may generate designs that are undefined, and values such as “Infinity” 
or “NaN” will be written into the Explore file.  OptdesX cannot graph such a file and will 
give you an error message. 
 
•Optimal explore graphs show how the optimum changes as we change two analysis 
variables. (We cannot change two design variables—these are adjusted by the software to 
achieve an optimum.) These types of plots, where an optimization is performed at each 
mesh point, can be expensive.  You must be very careful to set ranges so that an optimum 
can be found at each mesh point. 

 
In the figures below we show some examples of contour plots which can help us gain insight 
into an analysis model. 
 
The first plot, shown in Fig. 2.12 below, illustrates several features of interest. We note that 
that we have two optimums in the middle of the graph. We also have a step in the middle of 
the graph where the contours are steep—this would likely mean the algorithms would “fall”: 
down the step and find the second optimum. Also, in the upper left corner the contours are 
very close together. The “diamond” shapes along the right side are probably not real—these 
can occur when the underlying mesh is not fine enough. 
 
 

 
 

Fig. 2.12. Example Contour Plot 1 
 

Our next example is shown in Fig. 2.13. In this example, which represents the design space 
for a spring, we have a lot of constraint boundaries. As we examine constraint boundaries, 
we see that the feasible region appears to be a triangular area, as shown. In the lower right 
hand corner, however, we have an area of suspicious looking constraint boundaries 
(constraint 2), which, if valid, would mean no feasible region exists. When we consider the 

Function is steep 
in this region 

These are 
probably 
artifacts caused 
by not having a 
fine enough 
mesh 

Algorithms 
would likely 
find this 
optimum 

Is the model valid 
in these regions? 
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values of variables in this area, however, we understand that this boundary is bogus. In this 
part of the plot, the wire diameter is greater than the coil diameter. Since this is impossible 
with a real spring, we know this boundary is bogus and can be ignored. 

 
Fig. 2.13. Example Contour Plot 2 

 
Our third and final example is given in Fig. 2.14. This is a sensitivity plot. Plots 2,3,4,5 look 
pretty reasonable. Plot 1, however, exhibits some noise. We would need to take this into 
account when numerical derivatives are computed. (Recall that we would want to use a 
central difference scheme with a larger perturbation.) 

 
Fig. 2.14. Example Sensitivity Plot 

This constraint 
is bogus 

Feasible region 
is here 

This plot 
shows the 
function is 
noisy.  
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9 Modeling and Optimization Example: Optimization of a Heat 
Pump 

9.1 Problem Description 

To save energy, the installation of a heat pump is proposed as shown in Fig. 2.15.  The heat 
pump recovers heat from exhaust air and transfers it to incoming outdoor air. The building is 
electrically heated, so that if the heat pump does not bring the temperature of the incoming 
air up to 35°C, electric-resistance heat is used to supplement the heat pump.1  
 
Determine the size of compressor, condenser, and evaporator that provides a minimum total 
cost (capital costs and operating costs). The temperatures of approach in the evaporator and 
condenser should not be less than four degrees C. 
 
 

 
Fig. 2.15. Schematic of Heat Pump (After Stoecker) 

 
 
Data 
U Values of condenser and evaporator coils, 25 W / (m² · K) based on air-side area. 
Cost of coils, $100 per square meter of air-side area 
Compressor cost, including motor, $220 per motor kilowatt 
Power cost, 6 cents per kilowatt-hour 
Interest rate, 10 percent 
Economic life, 10 years 
Number of hours of operation per year, 4000 
Average outdoor temperature during the 4000 h, 0°C 
Air flow rate through both coils, 5 kg/s 
Temperatures of approach in the exchangers should be at least 4 °C. 

                                                 
1 This problem is a modified version taken from W. F. Stoecker, Design of Thermal Systems, 3rd Edition, 
McGraw Hill. 
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The performance characteristics of the compressor can be expressed as a coefficient of 
performance (COP), where 
  

COP =      refrigeration rate, kW                       
electric power to compressor motor, kW 

 
(Refrigeration rate is the heat absorbed at the evaporator.) The COP is a function of the 
evaporating and condensing temperatures, te°C, and tc°C, and can be represented by 
 
 COP = 7.24 + 0.352te   –   0.096 tc   –   0.0055 te tc (2.37) 
 

9.2 Initial Problem Discussion 

This problem involves determining the optimal trade-off between first costs and operating 
costs. If we are willing to put in a more expensive heat pump (larger heat exchangers and 
compressor) we can recover more heat and energy costs drop. Conversely, we can reduce 
initial costs by installing a smaller heat pump (or no heat pump at all) but energy costs are 
then higher. This is a relatively common situation with engineering systems. 
 
We have obviously made a number of simplifications to this problem. For example, we are 
not considering any benefit which might accrue from running the heat pump as an air 
conditioner during the summer. We are also using a relatively simple model for the 
condenser, evaporator and compressor. The optimization is also conducted on the basis of a 
constant outdoor air temperature of 0°C.  
 
Although not considered here, during actual operation the COP of the system would vary 
with the outdoor air temperature. A more complex analysis would analyze the savings 
assuming different outdoor air temperatures for certain times of the year, month or day. 
 
From consideration of the problem we define the following: 

,

,

,

(5 / )

, (1.0 / )

c

e

r

c

e

p

Q heat transfer condenser

Q heat transfer evaporator

Q heat transfer resistance heater

A area of condenser

A area of evaporator

W work input to compressor

m air mass flow rate kg s

C specific heat air kJ kg












 

,

,
e

c

t working fluid temperature evaporator

t working fluid temperature condenser



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, (0 )

,

, (24 )

o
aci

aco

o
aei

t inlet air temperature condenser C

t outlet air temperature condenser

t inlet air temperature evaporator C







 

,aeot outlet air temperature evaporator  

,

,

appe

appc

t temperature of approach evaporator

t temperature of approach condenser




 

COP coefficient of performance  

hpC  cost of heat pump 

ehpC  cost of electricity for heat pump 

erhC  cost of electricity for resistance heater 

totalC  total cost 

 
Some of these will be design variables and some will be design functions. In order to better 
understand these relationships, it will be helpful to write the equations for the model. 

9.3 Definition of Optimization Problem 

The definition of the optimization problem is not always obvious. In this case it is clear what 
the objective should be: to minimize overall costs (cost of heat pump and cost of energy over 
ten years). We also note we will have constraints on the temperature of approach in the 
evaporator and condenser. However, it is not clear what the design variables should be. For 
example, we need to determine , , ,aco aeo e ct t t t , ,e cQ Q , ,e cA A and W. 

 
Not all of these can be design variables, however, because once some of these are set, others 
can be calculated from the modeling equations. Some modeling equations essentially act as 
equality constraints and can be used to eliminate variables (as discussed in Section 6.1.1) 
 
For now we will define the optimization problem as follows, 
 
 Find , , ,aco aeo e ct t t t , ,e cQ Q , ,e cA A and W 

 
 To Minimize totalC  

 

 s.t. 
4

4

appe

appc

t

t




 

 
In the next sections, where we define the model and equation sequence, we will be able to 
refine this definition further. 

9.4 Model  Development 

The following equations will apply to the heat pump model, 
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Equation Explanation 

c eQ Q W   This equation comes from an energy balance across the 
heat pump. During steady state operation, the heat 
transferred at the condenser is equal to the heat absorbed 
at the evaporator and the energy input to the compressor. 

c c cQ UA T   This gives the heat transferred at the condenser in terms 
of the heat transfer coefficient, area and temperature 
difference.  

cT  This is the temperature difference across the condenser 
and is calculated as the log mean temperature difference: 

 
 
( ) ( )

ln ( ) /( )
c aci c aco

c
c aci c aco

t t t t
T

t t t t

  
 

 
 

( )c p aco aciQ mC t t   

 

The heat transferred at the condenser must equal the 
sensible heat gain of the air across the condenser. 

e e eQ UA T   The heat transferred at the evaporator. 
 

eT  The temperature difference across the evaporator: 
 
 
( ) ( )

ln ( ) /( )
aei e aeo e

e
aei e aeo e

t t t t
T

t t t t

  
 

 
 

( )e p aei aeoQ mC t t   

 

The heat transferred at the evaporator must equal the 
sensible heat loss of the air across the evaporator. 

(35 )r p acoQ mC t   Heat transfer to air by resistance heater.  

),( ce
e ttf

W

Q
COP   

 

Definition of coefficient of performance (note for this 
problem it specifies the COP in terms of “refrigeration 
rate,” which implies eQ instead of cQ  The actual equation 

for the COP is given in (2.37) 

total hp ehp erhC C C C    

 

We must bring the energy costs for the heat pump and 
the resistance heater into the present by calculating their 
present value. Other costs are already in the present. We 
will use (2.12) to do this: 

n

n

ii

i
AP

)1(

1)1(




  

( )appe aeo et t t   Temperature of approach for the evaporator. This is the 
difference between the air exit temperature and the 
working fluid temperature. 

( )appc aco ct t t   Temperature of approach for the condenser. 

 
It pays to be careful as you develop model equations. An error here can cause lots of grief 
downstream. One recommendation is to check the units of all equations to make sure the 
units are correct. 
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9.5 Equation Sequence 

In this step we will determine the order in which equations will be calculated. This will help 
us determine the set of design variables. It turns out, as we lay out the model equations, we 
find we only need three design variables. Once these three are set, all the others can be 
calculated. 
 
We will guess that we have design variables: , ,ace e ct t t  (this guess is not obvious—it 

sometimes takes some iterations of this step to decide what the most convenient set of 
variables will be).  
 
Get values of design variables from 
optimizer: , ,ace e ct t t  

 
 

The optimization code will set the values 
of these variables. 

Compute ),( ce ttfCOP   

 
 

From (2.37) 

( )

(5 / )(1.00 / )(24 )

e p aei aeo

aeo

Q mC t t

kg s kJ kg C t

 

  


 

 
 

Calculate heat transferred to air from 
evaporator 

COPQW e /  

 
 

Knowing  eQ and COP the Work can be 

calculated 

WQQ ec   

 
 

Heat at condenser 

c
aco aci

p

Q
t t

mC
 


 

 

Outlet air temperature of condenser 

/c c cA Q U T   

 
 

Area of condenser 

/e e eA Q U T   

 
 

Area of evaporator 

*100 *100 *220hp e cC A A W    Cost of heat pump 
 
 

(1 ) 1
*0.06*4000*

(1 )

n

ehp n

i
C W

i i

 



 

 

Present worth of energy cost to run heat 
pump 
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(1 ) 1
(35 )*0.06*4000*

(1 )

n

erh p aco n

i
C mC t

i i

 
 


  

 

Present worth of energy cost to run 
resistance heater 

total hp ehp erhC C C C    

 
 

Find total cost 

( )appe aeo et t t   

( )appc aco ct t t   

 

Find temperatures of approach 

 

9.6 Model Coding 

We are now ready to code the model. Although the code below is for OptdesX, similar 
coding would need to be done to connect with any optimizer. Note that even though we only 
have a few design functions, we send a lot of function values back to the optimizer (the calls 
to afdsca) so we can see them in the interface and verify the model is working properly. 
 
#include "supportC.h" 
#include <math.h> 
 
/*================================================================ 
    Function anapreC 
       Preprocessing Function 
------------------------------------------------------------------*/ 
void anapreC( char *modelName ) 
{ 
   /* set model name (16 chars max) */ 
   strcpy( modelName, "Heat Pump" ); 
} 
 
/*================================================================== 
    Function anafunC 
       Analysis Function 
------------------------------------------------------------------*/ 
void anafunC( void ) 
{ 
   /* don't forget to declare your variables and functions to be 
      double precision */ 
   double taei, taci, taco, taeo, te, tc, Ae, Ac, U, W, Qc, Qe; 
   double mdot, cp, delte, deltc, Costelec, Costpump, Costtot; 
   double Costresist, COP, appte, apptc, appte2, apptc2; 
 
   /* get AV values from OptdesX (Variable names 16 chars max) */ 
   avdscaC( &taeo, "evap air temp out" ); 
   avdscaC( &te, "temp evaporator" ); 
   avdscaC( &tc, "temp condenser" ); 
 
   U = 0.025; 
   mdot = 5.; 
   cp = 1.00; 
   taci = 0.; 
   taei = 24.; 
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   COP = 7.24 + 0.352*te - 0.096*tc - 0.0055*te*tc; 
 
   Qe = mdot*cp*(taei - taeo); 
   W = Qe/COP; 
   Qc = Qe + W; 
   taco = Qc/(mdot*cp) + taci; 
 
   if (fabs ((taei - te) - (taeo - te)) > 0.0001) { 
   delte = ((taei - te)-(taeo - te))/log((taei - te)/(taeo - te)); 
      } 
   else { 
      delte = ((taei - te)+(taeo - te))/2.; 
      } 
   if (fabs ((tc - taco) - (tc - taci)) > 0.0001) { 
      deltc = ((tc - taco)-(tc - taci))/log((tc - taco)/(tc - taci)); 
      } 
   else { 
      deltc = ((tc - taco)+(tc - taci))/2.; 
      } 
 
   Ac = Qc/(U*deltc); 
   Ae = Qe/(U*delte); 
 
   Costelec = W*6.144*0.06*4000.; 
   Costpump = Ae*100. + Ac*100. + W*220.; 
   Costresist = 0.; 
 
   if (taco < 35.) { 
      Costresist = mdot*cp*(35 - taco)*6.144*0.06*4000.; 
   } 
   Costtot = Costresist + Costelec + Costpump; 
 
   appte = taeo - te; 
   apptc = tc - taco; 
   appte2 = taei - te; 
   apptc2 = tc - taci; 
 
   afdscaC( COP, "COP" ); 
   afdscaC( Qe, "Q evaporator" ); 
   afdscaC( Qc, "Q condenser" ); 
   afdscaC( W, "Work" ); 
   afdscaC( delte, "delte" ); 
   afdscaC( deltc, "deltc" ); 
   afdscaC( Ac, "Area condenser" ); 
   afdscaC( Ae, "Area evaporator" ); 
   afdscaC( Costelec, "Cost electricity" ); 
   afdscaC( Costpump, "Cost heat pump" ); 
   afdscaC( Costresist, "Cost resist heat" ); 
   afdscaC( Costtot, "Cost total" ); 
   afdscaC( apptc, "temp app cond" ); 
   afdscaC( appte, "temp app evap" ); 
   afdscaC( appte2, "temp app evap2" ); 
   afdscaC( apptc2, "temp app cond2" ); 
} 
/*================================================================== 
    Function anaposC 
       Postprocessing Function 
------------------------------------------------------------------*/ 
void anaposC( void ) 
{ 
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} 

9.7 Linking and Verifying the Model 

After we have coded and debugged the model, we link it to the optimizer and begin 
verification. (In some situations we might be able to verify the model before we link to the 
optimizer. In such a case we would be able to execute the model separately.) Verification 
involves checking the model at various points to make sure it is working properly. The 
values of the design variables are changed manually, and the compute functions button is 
pushed (causing OptdesX to call the model) to look at the corresponding function values. In 
this case, I spent over two hours debugging the model. Initially I noticed that no matter what 
the starting design was, the cost would evaluate to be higher for small perturbations of the 
design variable, aeot , regardless of whether I perturbed it smaller or larger. The problem was 

finally traced down to the fact I was using “abs” for absolute value instead of “fabs” to get 
the absolute value of a real expression. This was causing erratic results in the model (“abs” is 
used to get the absolute value of integer expressions). I also discovered I had accidentally 
switched appet with appct . I did some “brute force” debugging to find these errors: I put in 

several printf statements and printed out lots of values until I could track them down. 
 

9.8 Optimizing the Model 

After debugging and checking the model at various points, we are finally ready to optimize. 
The first step is to make sure the scaled gradients (derivatives) look good. 
 
The unscaled gradients are, 

 
Fig. 2.16 Unscaled derivatives. 
 
We see that the derivatives vary by almost five orders of magnitude, from 0.33 to 3030. This 
can have the effect of slowing the search for an optimum or even causing premature 
termination. As discussed previously, OptdesX scales the gradients according to the Min, 
Max, Allowable and Indifference values which are provided by the user. We check the scaled 
gradients, 
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Fig. 2.17 Scaled derivatives. 
 
The scaling is much more uniform. 
 
The starting design is shown in Figs. 2.18 and 2.19 below: 
 

 
Fig. 2.18 Starting values of design variables. 
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Fig. 2.19. Starting values for functions. 
 
We are ready to optimize. We run the default algorithm GRG. The variables change to: 
 

 
Fig. 2.20 Optimum values for variables. 
 
We see that a design variable, evaporator air outlet temperature, has hit its lower bound of 
zero. We relax this bound somewhat to see if we can do better: 

This 
bound 
relaxed 
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Fig. 2.21 Optimum values for variables with relaxed bound. 
 
The functions at the optimum are given in Fig. 2.22. 
 

 
Fig. 2.22 Function values at optimum. 
 
We see that the total cost has decreased from $167,800 to $153,000. Although not shown in 
Fig. 2.22, the cost of the resistance heating has dropped to nearly zero. Does this make 
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sense? We see that the COP at the optimum is 2.2, meaning for every unit of energy input to 
the compressor, 2.2 units of heat are delivered at the condenser. So we would expect the heat 
pump to be a cost effective means of delivering heat. We might continue to explore this 
solution to make sure we understand it. 
 
A contour of the space around the optimum is given in Fig 2.23. We see that for this problem 
the solution is a relatively shallow unconstrained optimum. 
 

 
Fig 2.23 Contour plot for the heat pump. 

Unconstrained 
Optimum 


