
 Chapter 5: Introduction to Discrete Variable Optimization 

 1 

CHAPTER 5 
INTRODUCTION TO DISCRETE VARIABLE OPTIMIZATION 

5.1 Introduction 

5.1.1 Examples of Discrete Variables 
One often encounters problems in which design variables must be selected from among a set 
of discrete values. Examples of discrete variables include catalog or standard sizes (I beams, 
motors, springs, fasteners, pipes, etc.), materials, and variables which are naturally integers 
such as people, gear teeth, number of shells in a heat exchanger and number of distillation 
trays in a distillation column. Many engineering problems are discrete in nature. 

5.1.2 Solving Discrete Optimization Problems 
At first glance it might seem solving a discrete variable problem would be easier than a 
continuous problem. After all, for a variable within a given range, a set of discrete values 
within the range is finite whereas the number of continuous values is infinite. When 
searching for an optimum, it seems it would be easier to search from a finite set rather than 
from an infinite set. 
 
This is not the case, however. Solving discrete problems is harder than continuous problems. 
This is because of the combinatorial explosion that occurs in all but the smallest problems. 
For example if we have two variables which can each take 10 values, we have 

210*10 10 100= =  possibilities. If we have 10 variables that can each take 10 values, we 
have 1010 possibilities. Even with the fastest computer, it would take a long time to evaluate 
all of these. Obviously we need better strategies than just exhaustive search. 

5.1.2.1 Example: Standard I Beam Sections 
There are 195 standard I beam sections. If we have a structure with 20 different beam sizes, 
how many combinations of beams are possible? 
 
 20 45195 6.3*10=  
 
Since the number of grains of sand on the earth is estimated to be around 1*1025, this is a big 
number! 

5.1.3 Related Discrete Variables 
We also need to distinguish between discrete variables and related discrete variables. Often 
two discrete variables are related, i.e. the discrete values are somehow tied to each other. For 
example, suppose we wish to select a pipe, described by the thickness and diameter, from 
among a set of standard sizes. This makes thickness and diameter discrete. They will also 
likely be related, because certain values of thickness are matched to certain diameters and 
vice-versa. In general, as diameters increase, the available values for thickness increase as 
well. Material properties also represent related discrete variables. When we pick a certain 
material, the modulus, density, yield strength, etc. are also set. These material properties are 



 Chapter 5: Introduction to Discrete Variable Optimization 

 2 

related to each other. We cannot match, for example, the density of aluminum with the 
modulus for steel. When we have related discrete variables, we have discrete variables that 
fix the values of several variables at once. 

5.2 Discrete Optimization with Branch and Bound 

5.2.1 Description of General Branch and Bound Algorithm 
A classical method for handling discrete problems is called Branch and Bound. The word 
“branch” refers to a tree structure that is built. The word “bound” refers to an estimate of the 
objective function which is used to prune the tree. Branch and Bound requires that we have 
an efficient continuous optimization algorithm (we start by modeling the variables as 
continuous), which is called many times during the course of developing the discrete 
solution. Some definitions are in order. 
 

• Root of the tree: The starting point where all variables are allowed to be continuous. 
• Node: Any partial or complete discrete solution. In the example which follows, the 

number inside the node indicates the order in which it was evaluated.  
• Leaf: A complete solution in which all discrete variables are fixed at discrete values. 
• Bud Node: A partial solution that yet might grow further. 
• Branching or expanding a node: Creating a child node below a bud node. When we 

do this, we are fixing the values of the next discrete variable. 
• Candidate Discrete Optimum or Incumbent: The best complete solution we have 

found so far. 
• Bounding function: In our case, the value of the objective function with some discrete 

variables allowed to be continuous. This solution will form a lower bound to the 
actual solution and to the nodes below it. There is no bounding function for a leaf 
node, because all values are known and the objective can just be computed. 

• Pruning a node: Cutting off the branch of the tree for a node whose bound is higher 
(or even within some percentage) than the best incumbent so far. 

 
The branch and bound strategy works by developing an “upside down” tree structure (see 
example given Fig. 5.1). Initially, at the root of the tree, we optimize the design to find the 
continuous solution. This will be our beginning estimate of the objective. 
 
At the next level, only one discrete variable is allowed to take on discrete values: other 
discrete variables are modeled as continuous. At each level in the tree one more discrete 
variable is made discrete. The various combinations of values for discrete variables constitute 
nodes in the tree. 
 
We start by progressing down the tree according to the discrete variable combinations that 
appear to be the best. At each node, an optimization problem is performed for any continuous 
variables and those discrete variables modeled as continuous at that node. Assuming we are 
minimizing, the objective value of this optimization problem becomes a lower bound for any 
branches below that node, i.e. the objective value will underestimate (or, at best, be equal to) 
the true value of the objective since, until we reach the bottom of the tree, some of the 
discrete variables are modeled as continuous. Once a solution has been found for which all 



 Chapter 5: Introduction to Discrete Variable Optimization 

 3 

discrete variables have discrete values (we reach the bottom of the tree), then any node which 
has an objective function higher than the solution in hand can be pruned, which means that 
these nodes don't have to be considered further. 
 
As an example, suppose we have 3 discrete variables: variables 1 and 2 have 3 possible 
discrete values and variable 3 has 4 possible discrete values. A branch and bound tree would 
look like Fig. 5.1 given below. 
 
In this tree, “Level 0” represents the root node where all variables are continuous. "Level 1" 
represents the nodes where variable 1 is allowed to be discrete and variables 2 and 3 are 
continuous. For "Level 2," variables 1 and 2 are discrete; only variable 3 is continuous. In 
"Level 3," we are at a leaf node where all variables are discrete. The numbers in the circles 
show the order in which the nodes were evaluated. The number shown at the upper right of 
each circle is the optimum objective value for the optimization problem performed at the 
node. An asterisk means no feasible solution could be found to the optimization problem; a 
double underscore indicates the node was pruned. 
 
At the first level, three optimizations are performed with variable 1 at its 1st, 2nd and 3rd 
discrete values respectively (variables 2 and 3 continuous). The best objective value was 
obtained at node 3. This node is expanded further. Nodes 4, 5, 6 correspond to variable 1 at 
its 3rd discrete value and variable 2 at its 1st, 2nd and 3rd discrete values respectively, with 
variable 3 continuous. The best objective value for nodes 1, 2, 4, 5,and 6 is at node 1, so it is 
expanded into nodes 7, 8, and 9. Now the best objective value among unexpanded nodes is at 
node 5, so it is expanded. Nodes 10, 11, 12, 13 correspond to variable 1 at its 3rd discrete 
value, variable 2 at its 2nd discrete value, and variable 3 at its 1st, 2nd, 3rd, and 4th values. 
The best objective value, 59, is obtained at node 11. This becomes the temporary optimal 
solution. Any nodes with objectives higher than 59 can automatically be pruned since the 
objective only increases as we go down the tree from a node and make more and more 
variables discrete. Thus nodes 2, 7, 8 are pruned. Node 9, however, looks promising, so we 
expand this node. As is shown, we eventually find at node 16, with variable 1 at its 1st 
discrete value, variable 2 at its 3rd discrete value, and variable 3 at its 3rd discrete value, a 
better optimum than we had before. At this point all further nodes are pruned and we can 
stop. In this example we are using a best first strategy, meaning we always expand the node 
which has the lowest bound. 
 
It should be clear that Branch and Bound gains efficiency by pruning nodes of the tree which 
have higher bounds than known discrete solutions. In realistic problems, the majority of 
nodes are pruned—in the example which follows, less than 0.001% of the nodes were 
expanded. 
 
However, there is a cost—at each node we have to perform an optimization, which could 
involve many calls to the analysis program. One way to reduce this cost is by making a linear 
approximation to the actual problem and optimizing the linear approximation. This greatly 
reduces the number of analysis calls, but at some expense in accuracy. 
 
Another way to reduce the size of the tree is to select discrete value neighborhoods around 
the continuous optimum. It is likely the discrete solution for a particular variable is close to 



 Chapter 5: Introduction to Discrete Variable Optimization 

 4 

the continuous one. Selecting neighborhoods of the closest discrete values makes it possible 
to further restrict the size of the problem and reduce computation. 

 
Fig. 5.1 An example Branch and Bound tree expanded with a best first strategy. 

5.2.2 Branch and Bound with Integer Constraints 
The previous problem description was for general mixed discrete problems. A subset of these 
is a mixed problem with integer constraints, meaning the discrete variables are constrained to 
be integers. An approach to this problem with Branch and Bound is show in Fig. 5.2 below. 
 

 
Fig. 5.2. Branch and Bound with integer variables expanded using a depth first strategy. 



 Chapter 5: Introduction to Discrete Variable Optimization 

 5 

 
Note that in this example, we are using a depth first strategy, meaning we expand the best 
node at each level, without looking to see if there are nodes with better bounds at previous 
levels. At each level we have modeled the requirement that the variable be an integer with 
two constraints (e.g.   x1 ≤ 5; x1 ≥ 6 ), as opposed to just fixing the values of the variables (at 
either 5 or 6). These constraints allow the variable in question to assume any value except in 
the interval between two consecutive integers and thus do not artificially restrict the search 
space. In fact, it is possible that a variable currently at an integer value could assume a 
continuous value as additional constraints are added for other variables further down the tree, 
and the method needs to be able to accommodate this situation. 

5.3 Exhaustive Search 
The exhaustive search strategy examines all possible combinations of discrete variables to 
locate the discrete optimum. In terms of a branch and bound tree, exhaustive search examines 
those nodes found at the bottom of an un-pruned branch and bound tree structure. If the 
branch and bound strategy is performed without much pruning, more nodes could be 
evaluated and thus more time required than exhaustive search. In the above example, 17 
nodes were evaluated with branch and bound; exhaustive search would have required the 
evaluation of 3*3*4 = 36 nodes. The efficiency of branch and bound relative to exhaustive 
search therefore depends on how much pruning is done. 

5.4 Example: Design of 8 Story 3 Bay Planar Frame 
Prof. Richard Balling applied Branch and Bound to the design of a 2D structure, given in Fig. 
5.3. The objective was to minimize weight, subject to AISC combined stress constraints.  

WIDE FLANGE
SECTIONS

K1    /FT

5 K

K7

K7

K7

K7

K7

K7

K10

22' 22' 22'

15
'

7 
@

 1
1'

 =
 7

7'

2    /FTK

2    /FTK

2    /FTK

2    /FTK

2    /FTK

2    /FTK

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

LOG     (STRONG AXIS SECTION MODULUS)

LO
G

   
  (

C
R

O
SS

-S
EC

TI
O

N
AL

 A
R

EA
)

10

10

FIG. 1. Example 8-Story 3-Bay Planar Frame  

Fig. 5.3 Schematic of eight story 2D frame, and graph showing band of possible discrete 
values. 



 Chapter 5: Introduction to Discrete Variable Optimization 

 6 

 
Each beam can take one of 195 possible sizes. It was assumed the same size girder continues 
across each floor. The same size column continues for two stories. Exterior columns were 
assumed the same size; interior columns were also assumed the same size. These 
assumptions resulted in 16 separate members; for each member we needed to specify A, I, S, 
giving a total of 48 design variables (but only 16 related discrete variables). The constraints 
represented combined stress constraints for each member. 
 
For the starting design all members were W12x65. The weight was 58,243 lbs. There were 
13 violated stress constraints.  
 
Step 1: The discrete files were created and the problem set up. 
 
Step 2: A continuous optimization was performed. Using GRG, an optimum was achieved 
after 9 iterations and 486 analyses. The weight was 36,253 lbs. There were 20 binding stress 
constraints. 
 
Step 3: Discrete neighborhoods were chosen to reduce problem size. Neighborhoods were 
sized so that each member had 3 to 5 discrete combinations. 
 
Step 4: Linearization was done to further reduce computation. 
 
Step 5: Branch and bound was executed. The optimum required 3066 linear optimizations 
which represented only 0.001% of the possible nodes. The discrete optimum weighed 40,337 
lbs. and had 5 binding stress constraints. 

5.5 Simulated Annealing 

5.5.1 Introduction 
Branch and Bound and Exhaustive Search both suffer from a serious problem—as the 
number of variables increases, the number of combinations to be examined explodes. Clearly 
this is the case for Exhaustive Search, which does nothing to reduce the size of the problem. 
The same is true for Branch and Bound, although to a lesser degree, because of the pruning 
and approximations which are employed.  
 
In general then, algorithms which try to search the entire combinatorial space can easily be 
overwhelmed by the shear size of the problem. In contrast, the evolutionary algorithms we 
study in this and the following sections do not suffer from this problem. These algorithms are 
so-named because they mimic natural processes that govern how nature evolves. These 
algorithms do not attempt to examine the entire space. Even so, they have been shown to 
provide good solutions.  
 
Simulated annealing copies a phenomenon in nature—the annealing of solids—to optimize a 
complex system. Annealing refers to heating a solid to a liquid state and then cooling it 
slowly so that thermal equilibrium is maintained. Atoms then assume a nearly globally 
minimum energy state. In 1953 Metropolis et al. [22] created an algorithm to simulate the 
annealing process. The algorithm simulates a small random displacement of an atom that 



 Chapter 5: Introduction to Discrete Variable Optimization 

 7 

results in a change in energy. If the change in energy is negative, the energy state of the new 
configuration is lower and the new configuration is accepted. If the change in energy is 
positive, the new configuration has a higher energy state; however, it may still be accepted 
according to the Boltzmann probability factor: 
 

 exp b
E
k T

b

EP e
k T

æ ö-Dç ÷
è øæ ö-D

= =ç ÷
è ø

  (5.1) 

  
where bk is the Boltzmann constant and T is the current temperature. By examining this 
equation we should note two things: the probability is proportional to temperature--as the 
solid cools, the probability gets smaller; and inversely proportional to ED --as the change in 
energy is larger the probability of accepting the change gets smaller. 
 
When applied to engineering design, an analogy is made between energy and the objective 
function. The design is started at a high “temperature,” where it has a high objective (we 
assume we are minimizing). Random perturbations are then made to the design. If the 
objective is lower, the new design is made the current design; if it is higher, it may still be 
accepted according the probability given by the Boltzmann factor. The Boltzmann  
probability is compared to a random number drawn from a uniform distribution between 0 
and 1; if the random number is smaller than the Boltzmann probability, the configuration is 
accepted. This allows the algorithm to escape local minima. 
 
As the temperature is gradually lowered, the probability that a worse design is accepted 
becomes smaller. Typically at high temperatures the gross structure of the design emerges 
which is then refined at lower temperatures. 
 
Although it can be used for continuous problems, simulated annealing is especially effective 
when applied to combinatorial or discrete problems. Although the algorithm is not 
guaranteed to find the best optimum, it will often find near optimum designs with many 
fewer design evaluations than other algorithms. (It can still be computationally expensive, 
however.) It is also an easy algorithm to implement. 
 
Fig. 5.4 below shows how the weight of a structure changed as simulated annealing was used 
to select from among discrete structural members. Each cycle represents a temperature. It can 
be seen that in earlier cycles worse designs were accepted more often than in later cycles. 
 



 Chapter 5: Introduction to Discrete Variable Optimization 

 8 

0                 50                100               150              200

490

480

470

460

450

440

430

420

CYCLE

W
EI

GH
T

 
Fig. 5.4 Change in weight of structure during simulated annealing. 

 
The analogy between annealing and simulated annealing is summarized in the table below. 
 

Annealing objective –  
minimum energy configuration 

Simulated annealing objective - 
minimum cost 

Annealing Boltzmann equation 

exp b
E
k T

B

EP e
k T

æ ö-Dç ÷
è øæ ö-D

= =ç ÷
è ø

 

Simulated annealing Boltzmann 
equation 

exp avg
E
E T

avg

EP e
E T

æ ö-Dç ÷Dè ø
æ ö-D

= =ç ÷ç ÷Dè ø
 

P is the probability that an atom will 
move from a lower to a higher 
energy state 

P is the probability that a higher cost 
design will be accepted 

ED  is the change in energy to go 
from a lower energy state to a higher 
one 

ED  is the cost difference between 
the current design and the previous 
one 

T is the absolute current annealing 
temperature; it correlates to the 
amount of mobility of the molecules 
or atoms 

T is a unitless value; it correlates to 
the mobility of the optimization 
process to accept a higher cost 
design 

Bk is the Boltzmann constant avgED is the running average value of 
the ED ; it normalizes the change in 
the objective ( )ED  

 

5.5.2 Algorithm Description  

5.5.2.1 Selecting Algorithm Parameters 
In the above table, notice that instead of (5.1), we use the following to estimate Boltzmann 
probability: 



 Chapter 5: Introduction to Discrete Variable Optimization 

 9 

 exp avg
E
E T

avg

EP e
E T

æ ö-Dç ÷Dè ø
æ ö-D

= =ç ÷ç ÷Dè ø
 (5.2) 

 
We see that this equation includes avgED instead of k. The constant avgED is a running average 
of all of the “accepted” ED (objective changes) to this point in the optimization. It normalizes 
the change in the objective, ED , in (5.2). 
 
Equation (5.2) is also a function of a “temperature,” T. How is this chosen? We recommend 
you set the probability level, sP , that you would like to have at the beginning of the 
optimization that a worse design could be accepted. Do the same for the probability level at 
the end of the optimization, fP . Then, if we assume avgE ED = D , (which is clearly true at the 
start of the optimization), 
 

  
( ) ( )
1 1

ln lns f
s f

T T
P P
- -

= =   (5.3) 

 
Select the total number of cycles, N, you would like to run. Each cycle corresponds to a 
temperature. Decrease temperature according to the expression, 
 

  
( )1 1

1

N
f

n n
s

T
T F T F

T

-

+

æ ö
= × = ç ÷

è ø
 (5.4) 

 
where 1nT + is the temperature for the next cycle, nT  is the current temperature, and F is the 
reduction factor (< 1). Note that the design should be perturbed at each temperature until 
“steady state” is reached. Since it is not clear when steady state is reached for a design, we 
recommend perturbing the design at least n (n = no. of design variables) or more if 
computationally feasible.  

5.5.2.2 Example: Choosing Parameters for Simulated Annealing 
We pick the following: 
 
  -80.5 10 100s fP P N= = =  
 
and using (4.3) and (4.4) we calculate, 
 
  1.4426 0.054278 0.9674s fT T F= = =  

5.5.2.3 Algorithm Steps 
1. Choose a starting design. 
2. Select ,  s fP P , N, and calculate ,  s fT T and F. 
3. Randomly perturb the design to different discrete values close to the current design. 
4. If the new design is better, accept it as the current design. 



 Chapter 5: Introduction to Discrete Variable Optimization 

 10 

5. If the new design is worse, generate a random number between 0 and 1 using a 
uniform distribution. Compare this number to the Boltzmann probability. If the 
random number is lower than the Boltzmann probability, accept the worse design as 
the current design. 

6. Continue perturbing the design randomly at the current temperature until “steady 
state” is reached. 

7. Decrease temperature according to 1n nT F T+ = ×  
8. Go to step 3. 
9. Continue the process until Tf is reached. 

 
In the early stages, when the temperature is high, the algorithm has the freedom to “wander” 
around design space. Accepting worse designs allows it to escape local minima. As 
temperature is decreased the design becomes more and more “frozen” and confined to a 
particular region of design space. 
 
A diagram of the algorithm is given in Fig. 5.4: 
 

 

Fig. 5.4. The Simulated Annealing algorithm. 
 

5.5.2.4 Limitations of Simulated Annealing 
Simulated annealing is really developed for unconstrained problems. Questions arise when 
applied to constrained problems--if the perturbed design is infeasible, should it still be 
accepted? Some implementations automatically reject a design if it is infeasible; others use a 
penalty function method so the algorithm “naturally” wants to stay away from infeasible 
designs. 
 
Simulated annealing does not use any gradient information. Thus it is well suited for discrete 
problems. However, for continuous problems, if gradient information is available, a gradient-
based algorithm will be much (>100 times) faster. 

Simulated Annealing 

Starting 
Design 

Current Design 

Replace current 
with candidate 

Randomly generated  
                  design 

If candidate 
is worse If candidate 

is better  

Reject 
Candidate  

If ( Random Number < Boltzmann 
Prob ) 

Candidate Design Generate probability 
of acceptance  



 Chapter 5: Introduction to Discrete Variable Optimization 

 11 

5.5.3 Examples of Simulated Annealing 
Balling describes the optimization of a 3D, un-symmetric 6 story frame, shown below. 
 

 
Fig. 5.5. Six story frame. 

 
The 156 members were grouped into 11 member groups--7 column groups and 4 beam 
groups. Beams and columns must be selected from a set of 47 economy sections for beams 
and columns respectively. The starting design had a weight of 434,600 lbs. Eleven 
perturbations were examined at each temperature, and with 100N = , an optimization 
required 1100 analyses. Two iterations of simulated annealing were performed, with the 
starting design of the second iteration being the optimum from the first. The results were as 
follows: 
 

Iteration Optimal Weight Execution Time 
1 416,630 lbs. 1:24:09 
2 414,450 lbs. 1:26:24 

Total  2:50:33 
 

 
The change in weight observed as temperature was decreased for the first iteration was very 
similar to the diagram given Fig. 5.3. 
 
Simulated annealing was compared to the branch and bound strategy. First a continuous 
optimization was performed. Each design variable was then limited to the nearest 4 discrete 
variables. To reduce computation, a linear approximation of the structure was made using 
information at the continuous optimum. Because the neighborhoods were so small, the 
algorithm was run 4 iterations, where the starting point for the next iteration was the 
optimum from the current iteration. 
 

3 @ 30 ft  =  90 ft

2  @ 40 ft  =
 80 ft

6 
@

 1
4 

ft 
=

 8
4 

ft

Y

Z
X



 Chapter 5: Introduction to Discrete Variable Optimization 

 12 

Iteration Optimal Weight Execution Time 
1 420,410 lbs. 0:13:44 
2 418,180 lbs. 1:09:44 
3 414,450 lbs. 0:12:24 

Total  1:35:52 
 

 
Liu [43] used simulated annealing for the discrete optimization of pipe network systems. 
Pipes, like wide flange sections, are only manufactured in certain sizes. For this work, each 
pipe could be selected from 30 possible values. 
 
An example network is shown in Fig. 5.6. This network has 22 pipe sizes to be chosen. 
 

 
Fig. 5.6 Pipe network optimized with simulated annealing 

 
Arrows give required flows that must enter or leave the network. Simulated annealing was 
used to find the network with the least cost that could meet these demands for this problem, 
Ps = 0.9, F=0.9, N=65, and 5 perturbed designs were evaluated at each temperature. For this 
optimization 7221 analysis calls to the network flow solver were required. 
 
The change in cost during optimization is given below. 
 

loop 1 loop 2

loop 3 loop 4
loop
5

loop 6 loop 7

1

2

10

4

3
5

7
6

22

 8

9 12

11

21
20

 19 17

14 13

18 16
15

1.0 m^3/s

1.0 m^3/s
1.0 m^3/s

1.0 m^3/s

1.0 m^3/s 1.0 m^3/s 1.0 m^3/s

1.0 m^3/s

1.0 m^3/s

1.0 m^3/s 1.0 m^3/s

1.0 m^3/s

12.0 m^3/s
2.0 m^3/s

1.0 m^3/s
1.0 m^3/s



 Chapter 5: Introduction to Discrete Variable Optimization 

 13 

 
Fig. 5.7 Simulated annealing history for pipe network. 
 

 
Additional information about Simulated Annealing can be found in Aarts E. and J. Korst 
[34], Bohachevsky et al. [35], Kirkpatrick et al. [36] and Press et al. [37]. 
 

60504030201000
360000

380000

400000

420000

440000

Outer iteration number

C
os

t (
$)



 14 Chapter 5: Introduction to Discrete Variable Optimization 

 14 

5.6 Classical Genetic Algorithms 

5.6.1 Introduction 
Genetic Algorithms (GA) are based on the Darwinian theory of natural selection and survival 
of the fittest. The search algorithm mimics reproduction, crossover, and mutations in nature. 
The roots of genetic algorithms are traced to work done by Holland [38]. Taking a quote 
from Davis [39]: 
 
“In nature species are searching for beneficial adaptations to a complicated and changing 
environment. The “knowledge” that each species gains with a new generation is embodied in 
the makeup of chromosomes. The operations that alter the chromosomal makeup are applied 
when parents reproduce; among them are random mutation, inversion of chromosomal 
material and crossover--exchange of chromosomal material between two parents’ 
chromosomes. Random mutation provides background variation and occasionally introduces 
beneficial material into a species’ chromosomes. Inversion alters the location of genes on a 
chromosome, allowing genes that are co-adapted to cluster on a chromosome, increasing 
their probability of moving together during crossover. Crossover exchanges corresponding 
genetic material from two parent chromosomes, allowing beneficial genes on different 
parents to be combined in their offspring.” 
 
Goldberg [40] has suggested four ways that genetic algorithms are different from traditional 
derivative-based algorithms: 
 

• GA’s work with a coding of the variables, not the variables themselves. 
• GA’s search from a population of points, not a single point. 
• GA’s use objective function information, not derivatives or other auxiliary 

knowledge. 
• GA’s use probabilistic transition rules, not deterministic rules. 

 
As given in Gen [41], there are five basic components to a genetic algorithm: 
 

1. A genetic representation of solutions to the problem. 
2. A way to create an initial population of solutions. 
3. An evaluation function rating solutions in terms of the fitness. 
4. Genetic operators that alter the genetic composition of children during reproduction. 
5. Values for parameters of genetic algorithms. 

 
In the next section all of the components will be specified as we step through the algorithm. 

5.6.2  Steps of the Classical Algorithm 
1. Determine a coding for the design. The classical algorithm uses binary coding. A 

design is coded as a “chromosome.” 
2. Develop the initial population. This can be done by randomly creating a set of designs 

which are evenly spread through the design space. A population of 20 to 100 designs 
often works well. 



 Chapter 5: Introduction to Discrete Variable Optimization 

  15 

3. Pick a crossover and mutation rate. Typical values are 0.8 and 0.01, respectively. 
These are problem dependent, however, and are often determined experimentally. 

4. Select a way to measure the “fitness” or goodness of a design. Often we will just use 
the objective value. (In Chapter 6, we will learn other ways of measuring fitness.) 

5. Select the mating pool. These will be the designs which will be chosen to become 
parents and produce the next generation. This selection can be done several ways. 
Two of the most popular are roulette wheel selection and tournament selection. In 
roulette wheel selection, we select a parent based on spinning a “roulette wheel.” The 
size of the slot on the wheel is proportional to the fitness. In tournament selection, a 
subset of the population is randomly selected and then the best design from the subset 
(the tournament) is taken to be the parent. We will illustrate both of these. 

6. Perform “crossover.” This requires that we select a crossover site and then “swap” 
strings at the crossover point, creating two new children. 

7. Perform “mutation.” The check for mutation is done on a bit by bit basis. The 
mutation rate is usually kept low (0.005, for example). If a bit mutates, change it from 
1 to 0 or vice-versa. 

8. The new population has now been created. Decode the population strings to get the 
normal variable values and evaluate the fitness of each design. We now have a new 
generation of designs, and so we go back to step 2. 

9. Continue for a specific number of generations or until the average change in the 
fitness value falls below a specified tolerance. 

 
The above steps can be modified by several changes to enhance performance. We will 
discuss these more in Chapter 6.  
 
There are several parts to the above steps; these will be explained further.   

5.6.3 Binary Coded Chromosomes 

5.6.3.1 Precision with Binary Strings 
The original GA algorithm worked with binary coded strings. If we first consider continuous 
variables, we will need to convert them to binary, this requires that we establish an 
acceptable level of precision. This is determined from, 
 

 Precision =  ( )
2 1
i i
p

U L-
-

 (5.5) 

 
 where  Ui  = upper bound for ith variable 
  Li = lower bound for ith variable 
  p = length of binary string 
 
The precision determines the smallest change we can make in a variable and have it reflected 
in the binary string. 

5.6.3.2 Example: Determining the Precision of Binary Coding 
We decide to have a binary string length of 8, and a variable has an upper bound of 10 and a 
lower bound of zero. The precision is, 



 16 Chapter 5: Introduction to Discrete Variable Optimization 

 16 

 

 8

(10 0) 10 0.0392
2 1 255
-

= =
-

 

 
This is the smallest change in a variable we will be able to distinguish using a binary coding 
with a string length of 8. 

5.6.3.3 Converting from Real to Binary 
To convert a real number value to a binary string, first convert it to a base 10 integer value, 
using the formula, 
 

 int10
( )*
( )
realx L Jx
U L
-

=
-

 (5.6) 

 
 where xreal  = real number value 
  xint10 = base 10 integer 
  J = 2 1p -  
 
Then convert the integer to a binary string using 0 1 22 1, 2 2, 2 4= = = , etc. 

5.6.3.4 Example: Converting from Real to Binary 
We have a variable value of 3.567, with a string of length 8, and an upper bound of 10 and a 
lower bound of zero. The base 10 integer value is, 
 

 xint10 = 
(3.567 – 0) 255

10 – 0    = 90.95 = 91 
 
In binary, this value is 01011011 = ( 0 1 3 4 6(2 1) (2 2) (2 8) (2 16) (2 64)= + = + = + = + = = 91 
 
To go from binary back to real, just solve (4.9) for the real value: 
 

 int10
( )*real
U Lx x L
J
-

= +  (5.7) 

5.6.3.5 Creating Chromosomes 
A chromosome is created by combining the binary strings of all variables together. If we had 
two variables, which in binary form were 01011011 and 10001101, the chromosome would 
be: 
  0101101110001101  
 
 



 Chapter 5: Introduction to Discrete Variable Optimization 

  17 

5.6.4 Genetic Operators: Crossover and Mutation 

5.6.4.1 Crossover 
Crossover is the exchange of genetic material between two parent chromosomes to form two 
children. We randomly pick the crossover point and then swap the binary strings which 
follow after the crossover point. For example if before crossover we have the following 
parents with the indicated crossover point, 

 
 Parent 1: 00111 010 
 Parent 2: 11100 111 
 
Then after crossover we have: 

 
Child 1: 00111111 
Child 2: 11100010 

5.6.4.2 Mutation 
It is sometimes beneficial to introduce random “mutations” into our design. This is usually 
done bit by bit. If we have a mutation rate of 0.001 (0.1%), we draw random numbers from a 
uniform distribution. If the number is less than 0.001, we switch the bit from 0 to 1 or vice 
versa. Mutation helps introduce unexpected changes into the population. However, the 
mutation rate cannot be too high, or a high fraction of designs are essentially changed 
randomly. However, some practitioners have used mutation rates as high as 10%. 

5.6.5 Example: Converting a Chromosome Back to Variables 
Suppose the chromosome for two variables (x1, x2), each of string length 10, is given by: 
 00101101111011011100 
 
We partition the chromosome into: 
 x1: 0010110111   x2:  1011011100 
 
Minimum and maximum values: 
 5 ≤ x1 ≤ 10    1 ≤ x2 ≤ 25 
 
Base10 integer values: 
 x1,int10 = 183    x2,int10 = 732 
 
Continuous real values: 
 x1,real = 5.894    x2,real = 18.17 
 

5.6.6 Example: Classical Genetic Algorithm for One Generation 

In this problem we have the objective function 1 2
2 2f x x= + which we wish to maximize. The 

variables range from –2 to +5. We will have a string length of 7. We assume we have 
available a random number generator that generates uniformly distributed numbers between 



 18 Chapter 5: Introduction to Discrete Variable Optimization 

 18 

0 and 1. We will have a population size of 6 (which is small, but is used here for illustration 
purposes), a crossover probability of 0.8 and a mutation probability of 0.001. We will use 
roulette wheel selection to choose parents. 
 
We randomly generate the following six designs as our starting population: 
 

Design 
1x  2x  Fitness 

1 1.521 –0.824 2.9924 
2 3.922 –1.006 16.394 
3 2.179 –0.033 4.7491 
4 –0.292 4.405 19.489 
5 –0.523 –1.636 2.95 
6 2.956 –1.951 12.544 

 
We then convert the designs to binary strings and form chromosomes: 
 
Design 

1x  Base 
10 Int 

Binary 
2x  Base 

10 Int 
Binary Chromosome 

1 1.521 64 1000000 –
0.824 

21 0010101 10000000010101 

2 3.922 107 1101011 –
1.006 

18 0010010 11010110010010 

3 2.179 76 1001100 –
0.033 

36 0100100 10011000100100 

4 –
0.292 

31 0011111 4.405 116 1110100 00111111110100 

5 –
0.523 

27 0011011 –
1.636 

7 0000111 00110110000111 

6 2.956 90 1011010 –
1.951 

1 0000001 10110100000001 

 
There is some additional information we need to compute for the roulette wheel selection: 
 

Design Fitness Fitness/Sum Cumulative 
Probability 

1 2.992 0.0506 0.0506 
2 16.39 0.2773 0.328 
3 4.749 0.0803 0.408 
4 19.49 0.3297 0.738 
5 2.950 0.0499 0.788 
6 12.54 0.2122 1.00 
Sum 59.12 1.00  
Average 9.85   

 
The cumulative probability will be used to set the size of the slots on the roulette wheel. For 
example, Design 2 has a relatively high fitness of 16.39; this represents 27.7% of the total 
fitness for all designs. Thus it has a slot which represents 27.7% of the roulette wheel. This 
slot is the distance from 0.0506 to 0.328 under the cumulative probability column. If a 
random number falls within this interval, Design 2 is chosen as a parent. In like manner, 
Design 5, which has a low fitness, only gets 5% of the roulette wheel, represented by the 
interval from 0.738 to 0.788. 
 



 Chapter 5: Introduction to Discrete Variable Optimization 

  19 

We draw out six random numbers: 
0.219, 0.480, 0.902, 0.764, 0.540, 0.297 
 
The first random number is in the interval of Design 2—so Design 2 is chosen as a parent. 
The second number is within the interval of Design 4—so Design 4 is chosen as a parent. 
Proceeding in this fashion we find the parents chosen to mate are 2,4,6,5,4,2. 
 
We will mate the parents in the order they were selected. Thus we will mate 2 with 4, 6 with 
5, and 4 with 2. 
 
Should we perform crossover for the first set of parents? We draw a random number, 0.422, 
which is less than 0.8 so we do. We determine the crossover point by selecting a random 
number, multiplying by 13 (the length of the chromosome minus 1) and taking the interval 
the number lies within for the crossover point (i.e., 0-1 gives crossover at point 1, 10-11 
gives crossover at point 11, etc.) , since there are 1–13 crossover points in a 14 bit string. 
Crossover occurs at: 0.659 * 13 = 8.56 = 9th place. 
 
 Parent 1: 001111111 10100    
 Parent 2: 110101100 10010   
 
 Child 1:  00111111110010 
 Child 2: 11010110010100 
 
Do we perform mutation on any of the children? We check random numbers bit by bit--none 
are less than 0.001. 
 
Do we do crossover for the second set of parents? We draw a random number of 0.749, less 
than 0.8, so we do. Crossover for second mating pair: 0.067*13 = 0.871 = 1st place 
 
 Parent 3: 1 0110100000001  
 Parent 4: 0 0110110000111  
 
 Child 3: 10110110000111 
 Child 4: 00110100000001 
 
Again, no mutation is performed. 
 
Do we do crossover for third set of parents? Random number = 0.352 ≤ 0.8, so we do. 
Crossover for third mating pair: 0.260*13 = 3.38 = 4th place 
  
 Parent 5: 1101 0110010010 
 Parent 6: 0111 1111110100  
 
 Child 5: 11011111110100 
 Child 6: 00110110010010 
 
As we check mutation, we draw a random number less than 0.001 for the last bit of Child 5. 
We switch this bit. Thus this child becomes, 



 20 Chapter 5: Introduction to Discrete Variable Optimization 

 20 

 
 Child 5: 11011111110101 
 
We now have a new generation. 
 
We decode the binary strings to Base 10 integers which are converted to real values, using 
(4.10). Information on this new generation is given below. 
 
Design Chromosome Binary 1x  Base 

10 
Int 

1x  Binary 2x  Base 
10 
Int 

2x  Fitness 

1 00111111110010 0011111 31 –0.291 1110010 114 4.283 18.43 
2 11010110010100 1101011 107 3.898 0010100 20 –0.898 16.00 
3 10110110000111 1011011 91 3.016 0000111 7 –1.614 11.7 
4 00110100000001 0011010 26 –0.567 0000001 1 –1.945 4.10 
5 11011111110101 1101111 111 4.118 1110101 117 4.394 36.26 
6 00110110010010 0011011 27 –

0.5118 
0010010 18 –1.008 1.278 

       Sum 87.78 
       Average 14.63 
 
We see that the average fitness has increased from 9.85 to 14.63. 
 
This completes the process for one generation. We continue the process for as many 
generations as we desire. 

5.6.7 Example: Genetic Algorithm with Tournament Selection 
The previous example used roulette wheel selection. The roulette wheel selection process is 
dependent upon the scaling we choose for the objective. It must also be modified if we wish 
to minimize instead of maximize.  
 
Another way to select parents which does not have these drawbacks is tournament selection. 
This involves randomly selecting a subset of the population and then taking the best design 
of the subset. For example, with a tournament size of two, two designs are randomly chosen 
and the best of the two is selected as a parent. 
 
Tournament selection can be partly understood by considering the extremes. With a 
tournament size of one you would have random selection of parents, and with a tournament 
size equal to the population size, you would always be picking the best design as the parent. 
 
We will have a tournament size of two. We generate two random numbers and then multiply 
them by the population size: 
 
0.219* 6 =  1.31. Values between 1 and 2 give Design 2 
0.812* 6 =  4.87. Values between 4 and 5 give Design 5 
 
The best design of these two is Design 2, so design 2 is chosen to be Parent 1. (We are still 
working with the starting generation, not the second generation given above.) We then 



 Chapter 5: Introduction to Discrete Variable Optimization 

  21 

conduct another tournament to find Parent 2. We continue in a similar fashion until six 
parents are chosen. 
 
See also Michalewicz [42] for additional information. 

5.7 Comparison of Algorithms 
This chapter has introduced a few of the most common or classical methods for discrete or 
continuous/discrete optimization.  
 
Some time ago I came across this comparison of gradient-based algorithms, simulated 
annealing and genetic algorithms. I regret I cannot give credit to the author. The author 
assumes we are trying to find the top of a mountain using kangaroo(s). 
 
“Notice that in all hill climbing [gradient-based] methods discussed so far, the kangaroo can 
hope at best to find the top of a mountain close to where he starts. There’s no guarantee that 
this mountain will be Everest, or even a very high mountain. Various methods are used to try 
to find the actual global optimum.  
 
In simulated annealing, the kangaroo is drunk and hops around randomly for a long time. 
However, he gradually sobers up and tends to hop up hill. 
 
In genetic algorithms, there are lots of kangaroos that are parachuted into the Himalayas at 
random places. These kangaroos do not know that they are supposed to be looking for the top 
of Mt. Everest. However, every few years, you shoot the kangaroos at low altitudes and hope 
the ones that are left will be fruitful and multiply.” 


