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CHAPTER 7 

CONSTRAINED OPTIMIZATION 2: SQP AND GRG 

1 Introduction 

In the previous chapter we examined the necessary and sufficient conditions for a 
constrained optimum. We did not, however, discuss any algorithms for constrained 
optimization. That is the purpose of this chapter. 
 
In an oft referenced study done in 19801, dozens of nonlinear algorithms were tested on 
roughly 100 different nonlinear problems.  The top-ranked algorithm was SQP.  Of the five 
top algorithms, two were SQP and three were GRG.  Although many different algorithms 
have been proposed, based on these results, we will study only these two. 
 
SQP works by solving for where the KT equations are satisfied. SQP is a very efficient 
algorithm in terms of the number of function calls needed to get to the optimum.  It 
converges to the optimum by simultaneously improving the objective and tightening 
feasibility of the constraints.  Only the optimal design is guaranteed to be feasible; 
intermediate designs may be infeasible. 
 
The GRG algorithm works by computing search directions which improve the objective and 
satisfy the constraints, and then conducting line searches in a very similar fashion to the 
algorithms we studied in Chapter 3. GRG requires more function evaluations than SQP, but it 
has the desirable property that it stays feasible once a feasible point is found. If the 
optimization process is halted before the optimum is reached, the designer is guaranteed to 
have in hand a better design than the starting design.  GRG also appears to be more robust 
(able to solve a wider variety of problems) than SQP, so for engineering problems it is often 
the algorithm tried first. 

2 The Sequential Quadratic Programming (SQP) Algorithm 

The SQP algorithm was developed in the early 1980’s by M. J. D. Powell, a mathematician 
at Cambridge University. Before we begin describing this algorithm, we need to present 
some background information. 

2.1 The Newton Raphson Method for Solving Nonlinear Equations 

If we were to sum up how the SQP methods works in one sentence it would be: the SQP 
algorithm applies the Newton-Raphson method to solve the Kuhn-Tucker equations. Or, in 
short, SQP does N-R on the K-T! Thus we will begin by reviewing how the Newton Raphson 
method works. 

                                                 
1 Schittkowski, K., "Nonlinear Programming codes: Information, Tests, Performance," Lecture Notes in 
Economics and Mathematical Systems, vol. 183, Springer-Verlag, New York, 1980.  
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2.1.1 One equation with One Unknown 

The N-R method is used to find the solution to sets of nonlinear equations.  For example, 
suppose we wish to find the solution to the equation: 
 
 2 xx e   
 
We cannot solve for x directly.  The N-R method solves the equation in an iterative fashion 
based on results derived from the Taylor expansion. 
 
First, the equation is rewritten in the form, 
 
 2 0xx e    (7.1) 
 
We then provide a starting estimate of the value of x that solves the equation. This point 
becomes the point of expansion for a Taylor series:  
 

  
0

0 0dF
F F x x

dx
    (7.2) 

 
(For reasons that will become apparent later, we will use F instead of f for our functions 
here.) We would like to drive the value of the function to zero: 
 

  
0

0 00 -  
dF

F x x
dx

   (7.3) 

 
If we denote 0x x x   , and solve for x  in (7.3): 
 

 
0

/

F
x

dF dx


   (7.4)  

 
We then add x to 0x  to obtain a new guess for the value of x that satisfies the equation, 
obtain the derivative there, get the new function value, and iterate until the function value or 
residual, goes to zero. The process is illustrated in Fig. 7.1 for the example given in (7.1), 
with a starting guess 2.0x  . 
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1 2 3 x

Second trial, x  = 1.469

First trial, x  = 2

dy /dx
4

2

y 0

- 2

- 4  
 Fig. 7.1 Newton Raphson method on (7.1) 
 
Numerical results are: 
 

K x f(x) df/dx 
1 2 –3.389056 –6.389056 
2 1.469553 –0.877738 –3.347291 
3 1.20732948 –0.13721157 –2.34454106 
4 1.14880563 –0.00561748 –2.15442311 
5 1.146198212 –0.000010714 –2.146208926 
6 1.1461932206 –0.00000000004 –2.1461932254 

 
For simple roots, N-R has second order convergence. This means that the number of 
significant figures in the solution roughly doubles at each iteration. We can see this in the 
above table, where the value of x at iteration 2 has one significant figure (1); at iteration 3 it 
has one (1); at iteration 4 it has three (1.14); at iteration 5 it has six (1.14619), and so on. We 
also see that the error in the residual, as indicated by the number of zeros after the decimal 
point, also decreases in this fashion, i.e., the number of zeros roughly doubles at each 
iteration. 

2.1.2 Multiple Equations with Multiple Unknowns 

The N-R method is easily extended to solve n equation in n unknowns.  Writing the Taylor 
series for the equations in vector form: 
 

 

 
 

 

T0 0
1 1

T0 0
2 2

T0 0

0

0

0 n n

F F

F F

F F

   

   

   

x

x

x

 
 

 
We can rewrite these relationships in matrix form: 
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T0
01

1
T 00

22

0
T0

     

n
n

F
F

FF

F
F

    
        
  
  
    

x


 (7.5) 

 
For 2 X 2 System, 
 

 

1 1

1 2 1 1

2 22 2

1 2

F F

x x x F

x FF F

x x

  
                   
   

 (7.6)  

 
In (7.5) we will denote the vector of residuals as 0F .  (This violates our notation convention 
that bold caps represent matrices, not vectors. Just remember that F is a vector, not a matrix.) 
We will denote the matrix of coefficients as G.  Equation (7.5) can then be written, 
 
    G x F  (7.7) 
 
The solution is obviously 
 

  -1  x G F  (7.8) 

 

2.1.3 Using the N-R method to Solve the Necessary Conditions 

In this section we will make a very important connection—we will apply N-R to solve the 
necessary conditions. Consider for example, a very simple case—an unconstrained problem 
in two variables. We know the necessary conditions are, 
 

 1

2

0

0

f

x

f

x










  (7.9) 

Now suppose we wish to solve these equations using N-R, that is we wish to find x* to drive 
the partial derivatives of f to zero. In terms of notation and discussion this gets a little tricky 
because the N-R method involves taking derivatives of the equations to be solved, and the 
equations we wish to solve are composed of derivatives. So when we substitute (7.9) into the 
N-R method, we end up with second derivatives. 
 

For example, if we set 1 2
1 2

and
f f

F F
x x

 
 
 

. Then we can write (7.6) as,  
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1 1 2 1 11

2

1 2 2 2 2

f f f

x x x x xx

xf f f

x x x x x

            
                                                          

 (7.10) 

 
or, 
 

 

2 2

2
1 2 1 11

2 2
2

2
21 2 2

f f f

x x x xx

x ff f
xx x x

                               

 (7.11) 

 
which should be familiar from Chapter 3, because (7.11) can be written in vector form as, 
 
 f  H x  (7.12) 
 
and the solution is, 
 

  1 f   x H  (7.13) 

 
We recognize (7.12-7.13) as Newton’s method for solving for an unconstrained optimum. 
Thus we have the important result that Newton’s method is the same as applying N-R on the 
necessary conditions for an unconstrained problem. From the properties of the N-R method, 
we know that if Newton’s method converges (and recall that it doesn’t always converge), it 
will do so with second order convergence—which is very fast. 
 
Now just to indicate where we are heading, after we introduce the SQP approximation, the 
next step is to show that the SQP method is the same as doing N-R on the necessary 
conditions for a constrained problem (with some tweaks to make it efficient and to ensure it 
converges). 

2.2 Constrained Optimization: Equality Constraints 

2.2.1 Problem Definition 

We will start with a problem which only has equality constraints. We recall that when we 
only have equality constraints, we do not have to worry about complementary slackness 
which makes things simpler. So the problem we will focus on is, 
 
 Min  f x  (7.14) 

 st.   0 1, 2, ,i ig b i m  x   (7.15) 

 



 Chapter 7: Constrained Optimization 2 
 

 6 

The necessary conditions for a constrained optimal solution are: 
 

 
1

m

i i
i

f g


    0  (7.16) 

 0 1, ,i ig b i m     (7.17) 

 

2.2.2 The SQP Approximation 

As we have previously mentioned in Chapter 6, a problem with a quadratic objective and 
linear constraints is known as a quadratic programming problem. These problems have a 
special name because the K-T equations are linear and are easily solved. We will make a 
quadratic programming approximation at the point 0x  to the problem given by (7.14-7.15) 
 

  T0 0 T 2 01
L

2a xf f f       x x x  (7.18) 

  T0 0
, 1, ,i a i i ig g g b i m     x   (7.19) 

 
where the subscript a is used in af  to indicate the approximation. Close examination of 

(7.18) shows something unexpected. Instead of 2 f as we would normally have if we were 

doing a Taylor approximation of the objective, we have 2
xL , the Hessian of the Lagrangian 

function with respect to x. Why is this case? It is directly tied to applying N-R on the K-T, as 
we will presently show. For now we will just accept that the objective uses the Hessian of the 
Lagrangian instead of the Hessian of the objective. 
 
We will solve the QP approximation, (7.18-7.19), by solving the K-T equations for this 
problem, which, as mentioned, are linear. These equations are given by, 
 

 ,
1

m

a i i a
i

f g


    0  (7.20) 

 , 0 1, ,i a ig b for i m     (7.21) 

 
Since, for example, from (7.18), 
 
 0 2 0La xf f    x  

 
we can also write these equations in terms of the original problem, 
 

 0 2 0 0

1

L
m

x i i
i

f g


     x 0  (7.22) 

  T0 0 0 1, ,i i ig g b for i m     x   (7.23) 
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These are a linear set of equations we can readily solve, as shown in the example in the next 
section. For Section 2.2.4, we will want to write these equations even more concisely. If we 
define the following matrices and vectors, 
 

 

 
 

 

 

T0
1

T0
0 0 0 0 02

1 2

T0

, ,
T

m

m

g

g
g g g

g

 
 
          
 
  

J J 


 

 

 

0
11

0
20 2 0 2 0 2 02

1

0

L
m

x i i
i

mm

bg

bg
f g

bg




   
   
         
   
   
    

g b


 

 
We can write (7.22-7.23) as, 
 

  T2 0 0 0Lx f     x J λ  (7.24) 

  0 0   J x g b  (7.25) 

 
Again, to emphasize, this set of equations represents the solution to (7.18-7.19). 
 

2.2.3 Example 1: Solving the SQP Approximation 

Suppose we have as our approximation the following, 
 

 

   

 

1 1
1 2

2 2

1

2

1 01
3 3 2

0 12

5 1 3 0

a

a

x x
f x x

x x

x
g

x

     
             

 
    

 (7.26) 

 
We can write out the K-T equations for this approximation as, 
  

 

 

1

2

1

2

3 1 0 1
0

2 0 1 3

5 1 3 0

a

a

x
f

x

x
g

x


      

                
 

    

 (7.27) 

We can rewrite these equations in matrix form as, 
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1

2

1 0 1 3

0 1 3 2

1 3 0 5

x

x



       
             
          

 (7.28) 

 
The solution is, 
 

 
1

2

2.6

0.8

0.4

x

x



    
        
      

 (7.29) 

 
Observations: This calculation represents the main step in an iteration of the SQP algorithm 
which solves a sequence of quadratic programs. If we wanted to continue, we would add 
x to our current x, update the Lagrangian Hessian, make a new approximation, solve for 
that solution, and continue iterating in this fashion. 
 
If we ever reach a point where x goes to zero as we solve for the optimum of the 
approximation, the original K-T equations are satisfied. We can see this by examining (7.22-
7.23). If x is zero, we have, 
 

 2 *

1
0

L
m

x i i
i

f g


     x 0


 (7.30) 

 

  T

0

0 1, ,i i ig g b for i m


     x 


 (7.31) 

 
which then match (7.16-7.17). 
 

2.2.4 N-R on the K-T Equations for Problems with Equality Constraints 

In this section we wish to look at applying the N-R method to the original K-T equations. 
The K-T equations for a problem with equality constraints only, as given by (7.16-7.17), are, 
 

 
1

m

i i
i

f g


    0  (7.32) 

 0 1, ,i ig b i m     (7.33) 

 
Now suppose we wish to solve these equations using the N-R method. To implement N-R we 
would have, 
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1 1
1

1 11 1

T T

x

T T

x n n n
TT

x

TT m m
x m m

F F F

F F F

g bg g

g b
g g









     
  
       

            
  
         

x

λ

  

 

 (7.34) 

 
where 1F  for example, is given by, 

 1
11 1

m
i

i
i

gf
F

x x





 
    (7.35) 

 
If we substitute (7.35) into matrix (7.32), the first row becomes, 
 

2 2 22 2 2
1 2

2 2
1 1 11 1 2 1 2 1 1 1 1 1 1

, , , , , , ,
m m m

i i i m
i i i

i i in n

g g g gg gf f f

x x x x x x x x x x x x x
  

  

                
                                     
   

 
Recalling, 

 2 2 2

1

m

x i i
i

L f g


      

 
And using the matrices we defined above, 
 

 

 
 

 

 

T0
1

T0
0 0 0 0 02

1 2

T0

, ,
T

m

m

g

g
g g g

g

 
 
          
 
  

J J 


 

 

 

0
11

0
20 2 0 2 0 2 02

1

0

L
m

x i i
i

mm

bg

bg
f g

bg




   
   
         
   
   
    

g b


 

 
we can rewrite (7.34) as, 
 

    02 0 0 0 0 0

00 0

L

0 ( )

T T

x f       
             

x xJ J λ

λ λJ g b
 (7.36) 
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If we do the matrix multiplications we have 
 

    T2 0 0 0 0 0 0L ( )
T

x f       x J λ λ J λ  (7.37) 

  0 0   J x g b  

 
and collecting terms, 
 

  T2 0 0 0Lx f     x J λ  (7.38)  

  0 0   J x g b  

 
which equations are the same as (7.24-7.25).  Thus we see that doing a N-R iteration on the 
K-T equations is the same as solving for the optimum of the QP approximation. This is the 
reason we use the Hessian of the Lagrangian function rather than the Hessian of the objective 
in the approximation. 

2.3 Constrained Optimization: Inequality and Equality Constraints 

In the previous section we considered equality constraints only. We need to extend these 
results to the general case. We will state this problem as 
 
 Min  f x   

 s.t.   0 1, ,i ig b i k  x   (7.39)  

   0 1, ,i ig b i k m   x    

 
The quadratic approximation at point xo is: 
 

 Min     T T0 0 2 01
L

2a xf f f       x x x   

 s.t.  , :i ag   0 0 1, 2,...,
T

i i ig g b i k    x  (7.40)  

  0 0 1,...,
T

i i ig g b i k m     x  

 
Notice that the approximations are a function only of ∆x.  All gradients and the Lagrangian 
hessian in (7.40) are evaluated at the point of expansion and so represent known quantities. 
 
In the article where Powell describes this algorithm,2 he makes a significant statement at this 
point. Quoting, “The extension of the Newton iteration to take account of inequality 
constraints on the variables arises from the fact that the value of x  that solves (7.39) can 

                                                 
2 Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical 
Analysis, Dundee 1977, Lecture Notes in Mathematics no. 630, Springer-Verlag, New York, 1978 
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also be found by solving a quadratic programming problem.  Specifically, x  is the value 
that makes the quadratic function in (7.40) stationary.” 
 
Further, the value of  for the K-T conditions is equal to the vector of Lagrange multipliers 
of the quadratic programming problem. Thus solving the quadratic objective and linear 
constraints in (7.40) is the same as solving the N-R iteration on the original K-T equations. 
 
The main difficulty in extending SQP to the general problem has to do the with the 
complementary slackness condition. This equation is non-linear, and so makes the QP 
problem nonlinear. We recall that complementary slackness basically enforces that either a 
constraint is binding or the associated Lagrange multiplier is zero. Thus we can incorporate 
this condition if we can develop a method to determine which inequality constraints are 
binding at the optimum. An example of a modern solution technique is given by Goldfarb 
and Idnani.3 This algorithm starts out by solving for the unconstrained optimum to the 
problem and evaluating which constraints are violated. It then moves to add in these 
constraints until it is at the optimum. Thus it tends to drive to the optimum from infeasible 
space. 
 
There are other important details to develop a realistic, efficient SQP algorithm. For 
example, the QP approximation involves the Lagrangian hessian matrix, which involves 
second derivatives.  As you might expect, we don't evaluate the Hessian directly but 
approximate it using a quasi-Newton update, such as the BFGS update. 
 
Recall that updates use differences in x and differences in gradients to estimate second 
derivatives. To estimate 2Lx  we will need to use differences in the gradient of the 

Lagrangian function, 
 

  
1

L
m

x i i
i

f g


      

 
Note that to evaluate this gradient we need values for i.  We will get these from our solution 
to the QP problem. Since our update stays positive definite, we don’t have to worry about the 
method diverging, like Newton’s method does for unconstrained problems. 

2.4 Comments on the SQP Algorithm 

The SQP algorithm has the following characteristics, 
 The algorithm is very fast. It is the most efficient optimization algorithm available 

today. 
 Because it does not rely on a traditional line search, it is often more accurate in 

identifying an optimum.  

                                                 
3 Goldfarb, D., and A. Idnani, "A Numerically Stable Dual Method for Solving Strictly Convex Quadratic 
Programs," Math. Programming, v. 27, 1983, p.1-33. 
 



 Chapter 7: Constrained Optimization 2 
 

 12 

 The efficiency of the algorithm is partly because it does not enforce feasibility of the 
constraints at each step. Rather it gradually enforces feasibility as part of the K-T 
conditions. It is only guaranteed to be feasible at the optimum. 

 
Relative to engineering problems, there are some drawbacks:  

 Because it can go infeasible during optimization—sometimes by relatively large 
amounts—it can crash engineering models. 

 It is more sensitive to numerical noise and/or error in derivatives than GRG. 
 If we terminate the optimization process before the optimum is reached, SQP does 

not guarantee that we will have in-hand a better design than we started with. GRG 
does guarantee this. 

2.5 Summary of Steps for SQP Algorithm 

1.   Make a QP approximation to the original problem.  For the first iteration, use a 
Lagrangian Hessian equal to the identity matrix. 
 

2. Solve for the optimum to the QP problem. As part of this solution, values for the 
Lagrange multipliers are obtained.   

 
3. Execute a simple line search by first stepping to the optimum of the QP problem. So the 

initial step is ∆x, and new old  x x x . See if at this point a penalty function, composed of 
the values of the objective and violated constraints, is reduced.  If not, cut back the step 
size until the penalty function is reduced.  The penalty function is given 

by
1

vio

i i
i

P f g


   where the summation is done over the set of violated constraints, and 

the absolute values of the constraints are taken.  The Lagrange multipliers act as scaling 
or weighting factors between the objective and violated constraints. 
 

4. Evaluate the Lagrangian gradient at the new point. Calculate the difference in x and in 
the Lagrangrian gradient, . Update the Lagrangian Hessian using the BFGS update. 

 
5. Return to Step 1 until ∆x is sufficiently small.  When ∆x approaches zero, the K-T 

conditions for the original problem are satisfied. 

2.6 Example of SQP Algorithm 

Find the optimum to the problem, 
 
 Min   4 2 2 2

1 2 1 2 1 12 2 5f x x x x x x     x  

 s.t.    2

1 20.25 0.75 0g x x    x  

 
starting from the point  -1,4 .  A contour plot of the problem is shown in Fig. 7.2. This 

problem is interesting for several reasons: the objective is quite eccentric at the optimum, the 
algorithm starts at point where the search direction is pointing away from the optimum, and 
the constraint boundary at the starting point has a slope opposite to that at the optimum. 



   Chapter 7: Constrained Optimization 2 

  13 

 
 

 
Fig. 7.2. Contour plot of example problem for SQP algorithm. 

 
Iteration 1  
We calculate the gradients, etc. at the beginning point. The Lagrangian Hessian is initialized 
to the identity matrix. 

At        T0 0 0 2 0 1   0
-1,4 , 17, 8,6 ,  L

0   1

T
f f

 
       

 
x  

    0 02.4375,  1.5,  0.75
T

g g    

 
Based on these values, we create the first approximation, 
 

    1 1
1 2

2 2

1 01
17.0 8 6

0 12a

x x
f x x

x x

     
             

 

 

   1

2

2.4375 1.5 0.75 0a

x
g

x

 
    

 

 
We will assume the constraint is binding.  Then the K-T conditions for the optimum of the 
approximation are given by the following equations: 
 
 0a af g     

 0ag   
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These equations can be written as, 
 
  18 1.5 0x      

  26 0.75 0x      

 1 22.4375 1.5 0.75 0x x      

 
The solution to this set of equations is 1 20.5,  2.25,  5.00x x         

 

The proposed step is, 1 0 1 0.5 1.5

4 2.25 1.75

       
               

x x x  

 
Before we accept this step, however, we need to check the penalty function, 
 

 
1

vio

i i
i

P f g


   

 
to make sure it decreased with the step. At the starting point, the constraint is satisfied, so the 
penalty function is just the value of the objective, 17P  . At the proposed point the 
objective value is 10.5f  and the constraint is slightly violated with 0.25g   . The penalty 

function is therefore, 10.5 5.0* 0.25 11.75P     . Since this is less than 17, we accept the 

full step. Contours of the first approximation and the path of the first step are shown in Fig. 
7.3. 
 

 
Fig. 7.3 The first SQP approximation and step. 
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Iteration 2  

At        T1 1 11.5 1.75 ,  10.5, 8.0 1.0 ,
T

f f      x  

   1 10.25, 2.5 0.75
T

g g     

 
We now need to update the Hessian of the Lagrangian.  To do this we need the Lagrangian 
gradient at x0 and x1. (Note that we use the same Lagrange multiplier, 1 , for both 
gradients.) 
 

    0 1 8.0 1.5 0.5
L , 5.0

6.0 0.75 2.25

     
        

     
x λ  

 

    1 1 8.0 2.5 20.5
L , 5.0

1.0 0.75 4.75

      
              

x λ   

 

    0 1 1 0 1 21.0
L , L ,

7.0

 
      

γ x λ x λ  

 0 1.5 1.0 0.5

1.75 4.0 2.25

       
             

x  

 
From Chapter 3, we will use the BFGS Hessian update, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  
  

γ γ H x x H
H H

γ x x H x
 

 
Substituting: 
 

 
 

 

 

 
2 1

21.0 1. 0. 0.5 1. 0.
21.0 7.0 0.5 2.25

1. 0. 7.0 0. 1. 2.25 0. 1.
L

0.5 1. 0. 0.50. 1.
21.0 7.0 0.5 2.25

2.25 0. 1. 2.25

        
                                               

 

 

2 1 1. 0. 16.8000 5.6000 0.0471 0.2118
L

0. 1. 5.6000 1.8667 0.2118 0.9529

     
        

     
 

 

2 1 17.7529  5.3882
L

5.3882   1.9137
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The second approximation is therefore, 
 

    1 1
1 2

2 2

17.753  5.38821
10.5 8.0 1.0

5.3882   1.91372a

x x
f x x

x x

     
               

 

 

   1

2

0.25 2.5 0.75 0a

x
g

x

 
     

 

 
 
As we did before, we will assume the constraint is binding. The K-T equations are, 
 
  1 28 17.753 5.3882 2.5 0x x         

  1 21 5.3882 1.9137 0.75 0x x         

  1 20.25 2.5 0.75 0x x       

 
The solution to this set of equations is 1 21.6145,  5.048,  2.615x x        . Because is 

negative, we need to drop the constraint from the picture. (We can see in Fig. 7.4 below that 
the constraint is not binding at the optimum.) With the constraint dropped, the solution 
is, 1 22.007, 5.131, 0.x x        This gives a new x of, 

 

 2 1 1.5 2.007 0.507

1.75 5.131 3.381

     
                

x x x  

 
However, when we try to step this far, we find the penalty function has increased from 11.75 
to 17.48 (this is the value of the objective only—the violated constraint does not enter in to 
the penalty function because the Lagrange multiplier is zero). We cut the step back. How 
much to cut back is somewhat arbitrary. We will make the step 0.5 times the original. The 
new value of x becomes, 
 

 2 1 1.5 2.007 0.4965
0.5  

1.75 5.131 0.8155

      
                

x x x   

 
At which point the penalty function is 7.37. So we accept this step. Contours of the second 
approximation are shown in Fig. 7.4, along with the step taken. 
 



   Chapter 7: Constrained Optimization 2 

  17 

 
Fig. 7.4 The second approximation and step. 

  
Iteration 3 

At        T2 2 20.4965 0.8155 ,  7.367, 5.102 2.124 ,
T

f f       x  

   2 20.6724, 0.493 0.75
T

g g     

 

    1 2 8.0 2.5 8.0
L , 0

1.0 0.75 1.0

      
              

x λ  

 

    2 2 5.102 0.493 5.102
L , 0

2.124 0.75 2.124

      
              

x λ  

 

    1 2 2 1 2 2.898
L , L ,

1.124

 
      

γ x λ x λ  

 1 0.4965 1.5 1.004

0.8155 1.75 2.5655

      
              

x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 2 17.7529  5.3882 1.4497 0.5623 5.8551 0.7320
L

5.3882   1.9137 0.5623 0.2181 0.7320 0.0915
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 2 2 13.3475  4.0939
L

4.0939   2.0403

 
   

 
 

 
So our next approximation is, 

    1 1
1 2

2 2

13.3475  4.09391
7.367 5.102 2.124

4.0939   2.04032a

x x
f x x

x x

     
               

 

 

   1

2

0.6724 0.493 0.75 0a

x
g

x

 
     

 

 
The K-T equations, assuming the constraint is binding, are, 
 
  1 25.102 13.3475 4.0939 0.493 0x x         

  1 22.124 4.0939 2.0403 0.75 0x x         

  1 20.6724 0.493 0.75 0x x       

 
The solution to this set of equations is 1 20.1399,  0.8046,  0.1205x x      .  

 

Our new proposed point is,  3 2 0.4965 0.1399 0.3566
 

0.8155 0.8046 0.0109

      
                

x x x   

 
At this point the penalty function has decreased from 7.37 to 5.85. We accept the full step. A 
contour plot of the third approximation is shown in Fig. 7.5. 
 

 
Fig. 7.5 The third approximation and step. 
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Iteration 4 

At        3 3 30.3566 0.0109 ,  5.859, 2.9101 0.2761 ,
T T

f f       x  

   3 30.01954, 0.2132 0.75
T

g g     

 

    2 3 5.102 0.493 5.161
L , 0.1205

2.124 0.75 2.214

      
              

x λ  

 

    3 3 2.910 0.2132 2.936
L , 0.1205

0.2761 0.75 0.3665

      
              

x λ  

 

    2 3 3 2 3 2.225
L , L ,

1.8475

 
     

 
γ x λ x λ  

 

 2 0.3566 0.4965 0.1399

0.0109 0.8155 0.8046

      
              

x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 3 13.3475  4.0939 2.7537 2.2865 10.6397 4.5647
L

4.0939   2.0403 2.2865 1.8986 4.5647 1.9584

     
        

     
 

 

 2 3 5.4616  1.8157
L

1.8157   1.9805

 
   

 
 

 
Our new approximation is, 

    1 1
1 2

2 2

5.4616  1.81571
5.859 2.910 0.2761

1.8157   1.98052a

x x
f x x

x x

     
               

 

 

   1

2

0.0195 0.2132 0.75 0a

x
g

x

 
     

 

 
The K-T equations, assuming the constraint is binding, are, 
 
 1 22.910 5.4616 1.8157 (0.2132) 0x x         

  1 20.2761 1.8157 1.9805 0.75 0x x         

  1 20.0195 0.2132 0.75 0x x       

 



 Chapter 7: Constrained Optimization 2 
 

 20 

The solution to this problem is, 1 20.6099,  0.1474,  0.7192x x       . Since  is 

positive, our assumption about the constraint was correct. Our new proposed point is, 
 

  4 3 0.3566 0.6099 0.2533

0.0109 0.1474 0.1583

     
                 

x x x   

 
At this point the penalty function is 4.87, a decrease from 5.85, so we take the full step. The 
contour plot is given in Fig. 7.6 
 

 
Fig. 7.6 The fourth approximation and step. 

 
Iteration 5 

At        4 4 40.2533 0.1583 ,  4.6071, 1.268 0.4449 ,
T T

f f      x  

   4 40.3724, 1.007 0.75
T

g g      

 

    3 4 2.9101 0.2132 3.063
L , 0.7192

0.2761 0.75 0.8155

      
              

x λ  

 

    4 4 1.268 1.007 0.5438
L , 0.7192

0.4449 0.75 0.9843

       
              

x λ  

 

    3 4 4 3 4 2.519
L , L ,

0.1688

 
      

γ x λ x λ  
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 3 0.2533 0.3566 0.6099

0.1583 0.0109 0.1474

     
               

x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 4 5.4616  1.8157 4.0644 0.2724 5.3681 1.4290
L

1.8157   1.9805 0.2724 0.0183 1.4290 0.3804

     
             

 

 

 2 4 4.1578  0.1144
L

0.1144   1.6184

 
   

 
 

 
Our new approximation is, 

    1 1
1 2

2 2

4.1578   0.11441
4.6071 1.268 0.4449

0.1144   1.61842a

x x
f x x

x x

     
               

 

 

   1

2

0.3724 -1.007 0.75 0a

x
g

x

 
     

 

 
The K-T equations, assuming the constraint is binding, are, 
 
 1 21.268 4.1578 0.1144 ( 1.007) 0x x          

  1 20.4449 0.1144 1.6184 0.75 0x x         

  1 20.3724 1.007 0.75 0x x       

 
The solution to this problem is, 1 20.0988,  0.6292,  0.7797x x      . Since  is positive, 

our assumption about the constraint was correct. Our new proposed point is, 
 

  5 4 0.2533 0.0988 0.3521

0.1583 0.6292 0.4709

     
               

x x x   

 
At this point the penalty function is 4.55, a decrease from 4.87, so we take the full step. The 
contour plot is given in Fig. 7.7 
 
We would continue in this fashion until x goes to zero. We would then know the original 
K-T equations were satisfied. The solution to this problem occurs at, 
 

    T* *0.495 0.739 ,  4.50f x  

 
Using OptdesX, SQP requires 25 calls to the analysis program. GRG takes 50 calls. 
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Fig. 7.7 The fifth approximation and step. 

 
A summary of all the steps is overlaid on the original problem in Fig. 7.8. 
 

 
Fig. 7.8 The path of the SQP algorithm. 
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3 The Generalized Reduced Gradient (GRG) Algorithm 

3.1 Introduction 

In the previous section we learned that SQP works by solving for the point where the K-T 
equations are satisfied. SQP gradually enforces feasibility of the constraints as part of the K-
T equations. In this section we will learn how GRG works. We will find it is very different 
from SQP. If started inside feasible space, GRG goes downhill until it runs into fences—
constraints--and then corrects the search direction such that it follows the fences downhill. At 
every step it enforces feasibility. The strategy of GRG in following fences works well for 
engineering problems because most engineering optimums are constrained. 

3.2 Explicit vs. Implicit Elimination 

Suppose we have the following optimization problem, 
 
 Min   2 2

1 23f x x x  (7.41) 

 
 s.t.   1 22 6 0g x x   x  (7.42) 

 
A contour plot is given in Fig. 7.9a.  
 
From previous discussions about modeling in Chapter 2, we know there are two approaches 
to this problem—we can solve it as a problem in two variables with one equality constraint, 
or we can use the equality constraint to eliminate a variable and the constraint. We will use 
the second approach. Using (7.42) to solve for 2x , 

 
 2 16 2x x   

 
Substituting into the objective function, (7.41), we have, 
 
 Min   2 2

1 13(6 2 )f x x  x  (7.43) 

 
Mathematically, solving the problem given by (7.41-7.42) is the same as solving the problem 
in (7.43). We have used the constraint to explicitly eliminate a variable and a constraint. 
Once we solve for the optimal value of 1x , we will obviously have to back substitute to get 

the value of 2x  using 7.42. The solution in 1x  is illustrated in Fig. 7.9b, where the sensitivity 

plot for 7.43 is given (because we only have one variable, we can’t show a contour plot). The 

derivative 
1

df

dx
of (7.43) would be considered to be the reduced gradient relative to the 

original problem. 
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Usually we cannot make an explicit substitution as we did in this example. So we eliminate 
variables implicitly. We show how this can be done in the next section. 
 

  
Fig. 7.9 a) Contour plot in 1 2,x x with equality 

constraint. The optimum is at 

 2.7693 0.4613T x . 

 

Fig. 7.9 b) Sensitivity plot for 7.43. The 
optimum is at 1 2.7693x   

 

3.3 Implicit Elimination 

In this section we will look at how we can eliminate variables implicitly. We do this by 
considering differential changes in the objective and constraints. We will start by considering 
a simple problem of two variables with one equality constraint, 
  
 Min    1 2

Tf x xx x  (7.44) 

 s.t.   0g b x  (7.45) 

 
Suppose we are at a feasible point.  Thus the equality constraint is satisfied. We wish to 
move to improve the objective function. The differential change is given by, 
 

 1 2
1 2

f f
df dx dx

x x

 
 
 

 (7.46) 

 
to keep the constraint satisfied the differential change must be zero: 
     

 1 2
1 2

0
g g

dg dx dx
x x

 
  
 

 (7.47) 

 
Solving for 2dx  in (7.47) gives:  
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 1
2 1

2

g x
dx dx

g x

 


 
 

 
substituting into  (7.46) gives, 
 

 1
1

1 2 2

f f g x
df dx

x x g x

             
 (7.48) 

 
where the term in brackets is the reduced gradient. 
 

i.e., 1

1 1 2 2

Rdf f f g x

dx x x g x

             
 (7.49) 

 
If we substitute x for dx , then the equations are only approximate.  We are stepping tangent 
to the constraint in a direction that improves the objective function. 

3.4 GRG Algorithm with Equality Constraints Only   

We can extend the concepts of the previous section to the general problem which we 
represent in vector notation. Suppose now we consider the general problem with equality 
constraints, 
 
 Min  f x  

 s.t.   0 1, ,i ig b i m  x   

 
We have n design variables and m equality constraints. We begin by partitioning the design 
variables into (n-m) independent variables, z, and m dependent variables y. The independent 
variables will be used to improve the objective function, and the dependent variables will be 
used to satisfy the binding constraints. If we partition the gradient vectors as well we have, 
 

        T

1 2 n m

f f f
f

z z z 

   
      

x x x
z 

        T

1 1 m

f f f
f

y y y

   
      

x x x
y   

 
We will also define independent and dependent matrices of the partial derivatives of the 
constraints: 
 

 

1 1 1

1 2

1 2

n m

m m m

n m

g g g

z z z

g g g

z z z

 



   
     
   
    

z





 

1 1

1 2

1 2

m

m

m m m

m

gg g

y y y

g g g

y y y


       

   
    

y
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We can write the differential changes in the objective and constraints in vector form as: 
 

    T T
df f d f d z z y y  (7.50) 

 d d d
   

  
 

z y 0
z y

 (7.51) 

 

Noting that 

y

 is a square matrix, and solving (7.51) for dy,  

 

 
1

d d
  

 
 

y z
y z

 (7.52) 

 
substituting (7.52) into (7.50), 
 

      
1

T T
df f d f d

  
  

 
z z y z

y z
  

or     
1

T TT
Rf f f

  
   

 
z y

y z
 (7.53) 

 
where T

Rf is the reduced gradient. The reduced gradient is the direction of steepest ascent 

that stays tangent to the binding constraints. 

3.5 GRG Example 1: One Equality Constraint 

We will illustrate the theory of the previous section with the following example. For this 
example we will have three variables and one equality constraint. We state the problem as, 
 
 Min 2 2 2

1 2 34 3f x x x    

  
 s.t. 1 2 32 4 10g x x x     

 
Step 1: Evaluate the objective and constraints at the starting point. 
The starting point will be  2 2 2T x , at which point 32 and 10f g  . So the 

constraint is satisfied. 
 
Step 2: Partition the variables. 
We have one binding constraint so we will need one dependent variable. We will arbitrarily 
choose 1x as the dependent variable, so  1xy . The independent variables will therefore be 

 2 3
T x xz . Thus,  



   Chapter 7: Constrained Optimization 2 

  27 

 

         22 2
1 1 @2

3 3 1@2,2

3

2 4
8 16

6 12

f

xx x f
x f f x

x xf x

x

 
                                 
  

z y z y  

 

   
2 3 1

4 1 2
g g g

z x x y x

        
             

 

 
Step 3: Compute the reduced gradient. 
We now have the information we need to compute the reduced gradient: 
 

    
1

T TT
Rf f f

  
   

 
z y

y z
 

 
     

 

T 1
4 12 16 4 1

2

28 20

Rf
      

 
 

 
Step 4: Compute the direction of search. 
We will step in the direction of steepest descent, i.e., the negative reduced gradient direction, 
which is the direction of steepest descent which stays tangent to the constraint.  
 

 
28

20

 
   

s  or, normalized, 
0.8137

0.5812

 
   

s  

 
Step 5: Do a line search in the independent variables 
We will use our regular formula, 
 
 new old  z z s  
 
We will arbitrarily pick a starting step length 0.5   
 

 2

3

2 0.8137 2.4068
0.5

2 0.5812 1.7094

new

new

x

x

       
               

 

 
Step 6: Solve for the value of the dependent variable. 
We do this using (7.52) above, only we will substitute fory dy : 
 

 
1  

   
 

y z
y z
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1
2

1
3

0.40691
4 1

0.29062

0.9590

x
x

x
    

       
           

 

y z

 

 
So the new value of 1x is, 

 

 
1 1

2 0.9590

1.041

new oldx x x  
 


 

 
Our new point  is  1.041 2.4069 1.7094T x at which point 18.9 and 10f g  . We 

observe that the objective has decreased from 32 to 18.9 and the constraint is still satisfied. 
This only represents one step in the line search. We would continue the line search until we 
reach a minimum. 

3.6 GRG Algorithm with Equality and Inequality Constraints   

In this section we will consider the general problem with both inequality and equality 
constraints, 
 
 Min  f x  

 s.t.   0 1, ,i ig b i k  x   

    0 1, ,i ig b i k m   x   

 
The extension of the GRG algorithm to include inequality constraints involves some 
additional complexity, because the derivation of GRG is based on equality constraints. We 
therefore convert inequalities into equalities by adding slack variables. So for example, 
 
  1 25 6x x   is changed to 1 2 15 6x x s     

 
where 1s is the slack variable and must be positive for the constraint to be feasible. The slack 

variable is zero when the constraint is binding. The word “slack” comes from the idea the 
variable “takes up the slack” between the function value and the right hand side. 
  
The GRG algorithm described here is an active constraint algorithm—only the binding 
inequality constraints are used to determine the search direction. The non-binding constraints 
enter into the problem only if they become binding or violated. 
 
With these changes the equations of Section 3.4 can be used. In particular, (7.53) is used to 
compute the reduced gradient.  
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3.7 Steps of the GRG Algorithm for the General Problem   

 
1. Evaluate the objective function and all constraints at the current point. 
 
2. For any binding inequality constraints, add a slack variable, si  
 
3. Partition the variables into independent variables and dependent variables. We will 

need one dependent variable for each binding constraint. Any variable at either its 
upper or lower limit should become an independent variable. 

 
4. Compute the reduced gradient using (7.53). 
 
5. Calculate a direction of search.  We can use any method to calculate the search 

direction that relies on gradients since the reduced gradient is a gradient. For example, 
we can use a quasi-Newton update. 

 
6. Do a line search in the independent variables.  For each step, find the corresponding 

values in the dependent variables using (7.52) with z and y substituted for dz and dy.  
 
7. At each step in the line search, drive back to the constraint boundaries for any violated 

constraints using Newton-Raphson to adjust the dependent variables.  If an independent 
variable hits its bound, set it equal to its bound. 

 

 The N-R iteration is given by 
1

( )
 

   


y g b
y

 We note we already have the matrix 

1 
y

 from the calculation of the reduced gradient. 

 
8. The line search may terminate either of 4 ways 
 

1) The minimum in the direction of search is found (using, for example, quadratic 
interpolation). 

2) A dependent variable hits its upper or lower limit. 

3) A formerly non-binding constraint becomes binding. 

4) N-R fails to converge.  In this case we must cut back the step size until N-R does 
converge. 

9. If at any point the reduced gradient in step 4 is equal to 0, the K-T conditions are 
satisfied.   

 

3.8 GRG Example 2: Two Inequality Constraints 

In this problem we have two inequality constraints and will therefore need to add in slack 
variables. 
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Fig. 7.10 Example problem for GRG algorithm 
 

   Min.    2
1 2f x x x  

 s.t.:   2 2
1 1 2 9 0g x x   x   

   2 1 2 1 0g x x   x  

 
Suppose, to make things interesting, we are starting at  T 2.56155, 1.56155 x  where both 

constraints are binding. 
 

Step 1: Evaluate functions. 

      1 25.0 0.0 0.0f g g  x x x  

Step 2: Add in slack variables. 

We note that both constraints are binding so we will add in two slack variables. 1 2,  s s . 

 
Step 3: Partition the variables 
Since the slack variables are at their lower limits (=0) they will become the independent 
variables; x1, x2 will be the dependent variables. 
              
  T

1 2s sz   T
1 2x xy  

Step 4: Compute the reduced gradient  
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    T
0.0 0.0f z     T

5.123 1.0f y  

 

 
1 0

0 1

  
    z

 
5.123 3.123

1.0 1.0

  
    y

 

 

 
1 0.1213 0.3787

0.1213 0.6213

   
    y

 

 

thus     
1 0.1213 0.3787 1 0 0.1213 0.3787

0.1213 0.6213 0 1 0.1213 0.6213

        
              y z

 

 

 

   

   
 

T 0.1213 0.3787
0.0 0.0 5.123 1  

0.1213 0.6213

0.0 0.0 0.50 2.56

0.50 2.56

rf
 

     
 

  

 

 
Step 5: Calculate a search direction. 
We want to move in the negative gradient direction, so our search direction will be 

 T 0.50 2.56s . This is the direction for the independent variables (the slacks).  When 

normalized this direction is  T 0.19 0.98s . 
 
Step 6: Conduct the line search in the independent variables 
We will start our line search, denoting the current point as 0z , 
 
  1 0 0 z z s  
 
Suppose we pick  = 1.0.  Then 
 

 

 1

1

0.0 0.19
1.0

0.0 0.98

0.19

0.98

   
    
   
 

  
 

z

z

 

 
Step 7: Adjust the dependent variables 
To find the change in the dependent variables, we use (7.52) 
 

 
1

1

2

x

x

                     
y z

y z
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0.1213 0.3787 0.19

0.1213 0.6213 0.98

   
       

 

 
0.394

0.586

 
   

 

 

 
1
1

1
2

2.56155 0.394 2.168

1.56155 0.586 2.148

x

x

  

    
 

 
at which point   2.522f x  

 
Have we violated any constraints? 
 

      2 22 2
1 1 2 9 2.168 2.148 9 0.31g x x       x  (violated) 

  2 1 2 1 2.168 2.148 1 0.98g x x       x  (satisfied) 

 
We need to drive back to where the violated constraint is satisfied.  We will use N-R to do 
this. Since we don't want to drive back to where both constraints are binding, we will set the 
residual for constraint 2 to zero. 
 
N-R Iteration 1: 

    
1

0 ( )n  
  


y y g b

y
 

  

2.168 0.1213 0.3787 0.31

2.148 0.1213 0.6213 0.0

2.130

2.110

     
            
 

   

 

 
 at this point   

 
   2 2

1

2

2.130 2.110 9 0.011

0.98

g

g

    

 
 

 
 N-R Iteration 2: 

 

2.130 0.1213 0.3787 0.011

2.110 0.1213 0.6213 0.0

2.1313
  

2.113

     
            
 

   

 

 
evaluating constraints: 
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   2 2

1

2

2.1313 2.113 9 0

0.98

g

g

    

 
 

 
We are now feasible again. We have taken one step in the line search! 
 

Our new point is 
2.1313

  
2.113

 
   

x at which point the objective is 2.43, and all constraints are 

satisfied. 
 
We would continue the line search until we run into a new constraint boundary, a dependent 
variable hits a bound, or we can no longer get back on the constraint boundaries (which is not 
an issue in this example, since the constraint is linear). 
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