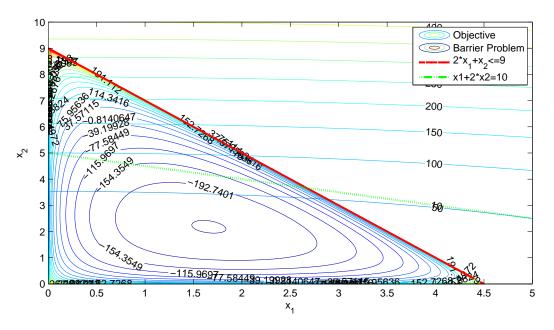

Name:_____

ME575 Homework: Interior Point Method

1. Solve the following problem using the interior point method:

min
$$x_1^2 - 2x_1x_2 + 4x_2^2$$

s.t. $0.1 x_1 - x_2 > 1$


Starting from $x_1=-5$, $x_2=-5$, $\lambda=0$, solve for one step with a barrier parameter $\mu = 10$ and a step size $\alpha = 0.5$. Plot the beginning and ending point for the step on the contour map below.

2. For the problem:

min
$$f = x_1^2 + 2x_2^2$$

s.t. $2x_1 + x_2 \le 9$
 $x_1 + 2x_2 = 10$
 $x_1 > 0, x_2 > 0$

and starting at the point, $x_1 = 3$, $x_2 = 2$ and barrier parameter $\mu = 100$, take one step by solving the barrier problem of the interior point algorithm. Use a step size of $\alpha = 0.5$ and starting Lagrange multipliers of zero for the equations.

b) Show how the step would change if you were to use a barrier parameter of $\mu = 10$ instead of 100. What are some of the tradeoffs with starting with either a high or low barrier parameter μ ?

c) Solve the problem with the IPOPT (Interior Point) solver at the following web address: <u>http://apmonitor.com/online/view_pass.php?f=ipm.apm</u>

Comment on the number of iterations, how the barrier parameter is reduced, the line search progress, or other items relevant to progress towards convergence.