
Solving a Two Bar Truss Problem Using APM Python

This tutorial is a step-by-step procedure for solving optimization problems with the

APMonitor Toolbox for Python. It has been tested with Python 2.7 with Numpy and

Matlibplot as additional packages. The tutorial assumes no prior experience with either

APMonitor or Python so many of the steps can be skipped by experienced users. The tutorial

covers the solution to a two bar truss optimization problem with additional details here:

http://apmonitor.com/me575/index.php/Main/TwoBarTruss

1. Create a new folder or directory for this problem. This problem is demonstrated with

Windows OS. Any other platform that can run Python 2.7 such as Linux or Mac OS is

also acceptable. Create a new folder TwoBar on the desktop. It will be located at:

C:\Users\{Your Username}\Desktop\Twobar

2. Create a Python script file (extension “.py”). A new script file can be created by right-

clicking in the new TwoBar folder and selecting New…Text Document. In this case the

script name of MyNewScript.py is given, but any script name can be chosen.

http://apmonitor.com/me575/index.php/Main/TwoBarTruss

3. Edit the Python script with IDLE, a Python script editor and development environment

installed with Python. To edit with IDLE, right-click MyNewScript.py and select “Edit

with IDLE”.

4. Include the following commands in your script file MyNewScript.py:

Import APM Python library apm.py

from apm import *

Select the server

server = 'http://byu.apmonitor.com'

Give the application a name

app = 'twobar'

Clear any previous applications by that name

apm(server,app,'clear all')

Load the model file

apm_load(server,app,'twobar.apm')

Solve on APM server

solver_output = apm(server,app,'solve')

Display solver output

print(solver_output)

Retrieve results

sol = apm_sol(server,app)

print ('')

print ('--- Results of the Optimization Problem ---')

print ('Height: ' + str(sol['height']))

print ('Diameter: ' + str(sol['diameter']))

print ('Weight: ' + str(sol['weight']))

print ('')

print ('--- All available variables ---')

print (sol.keys())

Display Results in Web Viewer

url = apm_web_var(server,app)

 The Python script is a text file and can be edited with a text editor like Notepad++, Emacs,

or within the IDLE editor. Note that the # sign indicates a comment character and comments

are indicated by gray text in the above script or as red in the IDLE editor.

5. Create an APMonitor model file (File Extension .apm) named twobar.apm that will be

used to configure the optimization problem. The model file is a collection of Constants,

Parameters, Variables, and Equations that relate the Design Variables to the Objective

Function. The APM model file can be modified by any text editor. Notepad++

(http://notepad-plus-plus.org) is recommended instead of the Windows default (Notepad

application) if you don’t have another text editor of choice.

http://notepad-plus-plus.org/

! Two bar truss engineering design problem

! APMonitor Modeling Language

! Solve model with the web-interface at:

! http://apmonitor.com/online/view_pass.php

Model

 Constants

 ! declare fixed values that never change

 pi = 3.14159

 End Constants

 Parameters

 ! declare model parameters

 ! parameters can be changed by the user or with

 ! input data but not by the optimizer

 width = 60

 thickness = 0.15

 density = 0.3

 modulus = 30000

 load = 66

 End Parameters

 Variables

 ! declare variables and initial guesses

 ! variables can be changed by the optimizer

 height = 30.00, >= 10.0, <= 50.0

 diameter = 3.000, >= 1.00, <= 4.00

 weight

 End Variables

 Intermediates

 ! intermediate variables are explicitly determined

 ! with equality constraints

 leng = sqrt((width/2)^2 + height^2)

 area = pi * diameter * thickness

 iovera = (diameter^2 + thickness^2) / 8

 stress = load * leng / (2*area*height)

 buckling = pi^2 * modulus * iovera / (leng^2)

 deflection = load * leng^3 / (2 * modulus * area * height^2)

 End Intermediates

 Equations

 ! objective: minimize the weight

 minimize weight

 ! equality constraints

 weight = 2 * density * area * leng

 ! inequality constraints

 weight < 24

 stress < 100

 stress < buckling

 deflection < 0.25

 End Equations

End Model

6. A final requirement is to obtain the APM package libraries from the APMonitor.com

web-site. These are a collection of .py file functions that allow a PYTHON user to use the

APM models to solve simulation and optimization problems. To obtain the APM library

browse to:

http://apmonitor.com/wiki/index.php/Main/PythonApp

Open the zipped archive and copy the file apm.py into the TwoBar folder on your desktop.

http://apmonitor.com/wiki/index.php/Main/PythonApp

7. The folder now contains all of the files necessary to solve the optimization problem.

Once the apm.py file is copied into the TwoBar folder, the following files should

appear:

 apm.py – file that allows users to work with the APM Python toolbox

 MyNewScript.py – Python driver script file for solving the Two Bar problem

 twobar.apm – Two Bar problem in the APMonitor Modeling Language

8. Solve the optimization problem by running the Python script MyNewScript.py. The

script can be run from the IDLE editor by clicking Run…Run Module from the toolbar

or Pressing F5 with the Python editor IDLE in focus

9. The results will be accessible through a solution.csv file downloaded to your run

directory or displayed in the Python Command Window.

10. A web-interface can also be used to view the results by issuing the statement at the

Command Window.

>> apm_web_var(server,app);

Name Lower Value Upper

pi --- 3.1416E+00 ---

leng --- 3.3926E+01 ---

area --- 7.8520E-01 ---

iovera --- 3.4986E-01 ---

stress --- 9.0000E+01 ---

buckling --- 9.0000E+01 ---

deflection --- 2.1795E-01 ---

width --- 6.0000E+01 ---

thickness 5.0000E-02 1.5000E-01 2.0000E-01

density --- 3.0000E-01 ---

modulus --- 3.0000E+04 ---

load --- 6.6000E+01 ---

height 1.0000E+01 1.4215E+01 5.0000E+01

diameter 1.0000E+00 1.6906E+00 4.0000E+00

weight --- 1.5868E+01 ---

slk_3 0.0000E+00 8.1317E+00 ---

slk_4 0.0000E+00 3.2617E+00 ---

slk_5 0.0000E+00 0.0000E+00 ---

slk_6 0.0000E+00 0.0000E+00 ---

11. Next is code for contour plots that can be added to the end of the MyNewScript.py file:

Generate a contour plot

Import some other libraries that we'll need

matplotlib and numpy packages must also be installed

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

Constants

pi = 3.14159

dens = 0.3

modu = 30000.0

load = 66.0

Analysis variables

wdth = 60.0

thik = 0.15

Design variables at mesh points

x = np.arange(10.0, 30.0, 2.0)

y = np.arange(1.0, 3.0, 0.3)

hght, diam = np.meshgrid(x, y)

Equations and Constraints

leng = ((wdth/2.0)**2.0 + hght**2)**0.5

area = pi * diam * thik

iovera = (diam**2.0 + thik**2.0)/8.0

wght = 2.0 * dens * leng * area

strs = load * leng / (2.0 * area * hght)

buck = pi**2.0 * modu * iovera / (leng**2.0)

defl = load * leng**3.0 / (2.0*modu * area * hght**2.0)

Create a contour plot

Visit http://matplotlib.org/examples/pylab_examples/contour_demo.html

for more examples and options for contour plots

plt.figure()

Weight contours

CS = plt.contour(hght, diam, wght)

plt.clabel(CS, inline=1, fontsize=10)

Stress<100

CS = plt.contour(hght, diam, strs,[100.0],colors='k',linewidths=[4.0])

plt.clabel(CS, inline=1, fontsize=10)

Deflection<0.25

CS = plt.contour(hght, diam, defl,[0.25],colors='b',linewidths=[4.0])

plt.clabel(CS, inline=1, fontsize=10)

Stress-Buckling<0

CS = plt.contour(hght, diam, strs-buck,[0.0],colors='r',linewidths=[4.0])

plt.clabel(CS, inline=1, fontsize=10)

Add some labels

plt.title('Two Bar Optimization Problem')

plt.xlabel('Height')

plt.ylabel('Diameter')

Save the figure as a PNG

plt.savefig('contour1.png')

Create a new figure to see more detail

plt.figure()

Weight contours

CS = plt.contour(hght, diam, wght)

plt.clabel(CS, inline=1, fontsize=10)

Stress<100

CS = plt.contour(hght, diam, strs,[90.0,100.0],colors='k',linewidths=[0.5, 4.0])

plt.clabel(CS, inline=1, fontsize=10)

Deflection<0.25

CS = plt.contour(hght, diam, defl,[0.22,0.25],colors='b',linewidths=[0.5, 4.0])

plt.clabel(CS, inline=1, fontsize=10)

Stress-Buckling<0

CS = plt.contour(hght, diam, strs-buck,[-5.0,0.0],colors='r',linewidths=[0.5, 4.0])

plt.clabel(CS, inline=1, fontsize=10)

Add some labels

plt.title('Two Bar Optimization Problem')

plt.xlabel('Height')

plt.ylabel('Diameter')

Save the figure as a PNG

plt.savefig('contour2.png')

Show the plots

plt.show()

12. The statement np.meshgrid(x, y) produces a mesh and makes hght and diam into arrays.

Design variables at mesh points

x = np.arange(10.0, 30.0, 2.0)

y = np.arange(1.0, 3.0, 0.3)

hght, diam = np.meshgrid(x, y)

Thereafter, any function that depends on these two variables will also be an array. Note that

we use array rather than matrices so that calculations are performed element by element

instead of regular matrix operations.

In the statements which produce the contours, the code [90.0, 100.0] indicates the levels we

wish to have for the contours. The statement colors='k' makes all of the contours the same

color (black). Other colors are ‘b’=blue, ‘r’=red, ‘g’=green, etc. The statement

linewidths=[0.5, 4.0] adjusts the line widths for each of the contour lines. Modifying the clabel

property places labels on the contour line for the values.

CS = plt.contour(hght, diam, strs,[90.0,100.0],colors='k',linewidths=[0.5, 4.0])

plt.clabel(CS, inline=1, fontsize=10)

In this case, the stress contour goes from 90 to 100 in just two increments. Alternatively we

could just give one number (without brackets), which would indicate the number of contours,

and Python would decide on the levels.

13. The resulting Figure 1 contour plot is given below. The plot file can be saved in a variety

of file formats including JPEG, PNG, EMF, EPS, etc. by using the Save button on the

bottom toolbar menu or by using the plt.savefig('myFile.png') Python command.

14. Figure 2 is a more detailed contour plot that shows specific values and the region of

feasible designs. Annotations and other mark-up items can be added within Python or

afterwards in an image editor.

15. For a 3-D plot of the objective function, the MatPlotLib package can be used. Other 3-D

plotting capabilities are also available in Python. The 3-D trending is not included in this

tutorial.

 http://matplotlib.org/examples/mplot3d/surface3d_demo.html

10

15

20

25

30

1

1.5

2

2.5

3
5

10

15

20

25

30

35

http://matplotlib.org/examples/mplot3d/surface3d_demo.html

