
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/229020350

Estimation	of	seasonal	transmission
parameters	in	childhood	infectious	disease
using	a	stochastic	continuous	time	model

ARTICLE		in		COMPUTER	AIDED	CHEMICAL	ENGINEERING	·	JANUARY	2010

DOI:	10.1016/S1570-7946(10)28039-2

CITATION

1

READS

17

4	AUTHORS,	INCLUDING:

Derek	A	T	Cummings

Johns	Hopkins	Bloomberg	School	of	Public…

131	PUBLICATIONS			6,938	CITATIONS			

SEE	PROFILE

Available	from:	Derek	A	T	Cummings

Retrieved	on:	11	February	2016

https://www.researchgate.net/publication/229020350_Estimation_of_seasonal_transmission_parameters_in_childhood_infectious_disease_using_a_stochastic_continuous_time_model?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/229020350_Estimation_of_seasonal_transmission_parameters_in_childhood_infectious_disease_using_a_stochastic_continuous_time_model?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Derek_Cummings?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Derek_Cummings?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Johns_Hopkins_Bloomberg_School_of_Public_Health?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Derek_Cummings?enrichId=rgreq-d6620190-3844-4c57-bf94-86fbc73a4a0b&enrichSource=Y292ZXJQYWdlOzIyOTAyMDM1MDtBUzoxMzM2ODI0Njc3MDg5MjhAMTQwODg4Mzc5MjEyNw%3D%3D&el=1_x_7


20th European Symposium on Computer Aided Process Engineering – ESCAPE20 
S. Pierucci and G. Buzzi Ferraris (Editors)  
© 2010 Elsevier B.V.  All rights reserved.  

Estimation of seasonal transmission parameters in 
childhood infectious disease using a stochastic 
continuous time model 
Daniel P. Worda, James K. Younga, Derek Cummingsb, Carl D. Lairda 
aArtie McFerrin Department of Chemical Engineering, Texas A&M University, MS 
3122 TAMU, College Station, TX 77843, USA,  
carl.laird@tamu.edu (corresponding author) 
bJohns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Rm E6541, 
Baltimore, MD 21205, USA, dcumming@jhsph.edu 

Abstract 
The development of accurate disease models is desirable for the purposes of gaining a 
better understanding of the underlying dynamics of infectious disease spread and for 
designing and implementing appropriate control measures to curb infectious disease 
spread. In this work we develop an estimation framework for long-term continuous time 
infectious disease models that considers both model and estimation noise. We present a 
nonlinear programming approach for efficient estimation of model parameters, 
including seasonal transmission profiles.  We then demonstrate the effectiveness of this 
framework using measles data from New York City and Bangkok, and show that a 
strong correlation exists between estimated seasonal parameters and school term 
holidays. 
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1. Introduction 
One goal of public health programs is to control the spread of infectious 

diseases and minimize the impact of disease on the population through various control 
measures such as vaccination programs.  However, there are several social, 
environmental, and biological factors affecting the spread of infectious disease, and the 
observed temporal dynamics are not always well understood.  The development of 
reliable mechanistic models for the spread of infectious diseases is needed both for 
aiding public health decision-making and for improving our understanding of factors 
affecting infectious disease spread.  Childhood infectious diseases, such as measles and 
chickenpox, remain a serious public health concern, especially in developing countries, 
and are commonly used as a test bed for developing disease models. 

Compartment-based disease models are commonly used to describe the 
dynamics of the disease within the population.  In these models the population is 
assumed to be well mixed with individuals placed into various compartments based on 
their status with respect to the disease.  For example, individuals can be classified as 
being susceptible to the disease (S), infected but not infectious (E), infected and 
infectious (I), or recovered and immune (R).  This type of model is typically classified 
according the progression of the population through the compartments [1]. 
 Much work has been done to model measles incidence using discrete time 
models [2-4].  The time-series SIR (TSIR) model, introduced by Finkenstädt and 
Grenfell [4], is a discrete-time model that incorporates a seasonal transmission 
parameter and an exponential mixing in the infection term. This model is capable of 
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capturing the biennial dynamics seen in cities with low birth rates, and it can 
quantitatively explain the annual cycle seen in measles incidence in cities with high 
birth rates [4-5].  The TSIR model and estimation procedure described for measles 
assumes a two-week reporting interval, which is similar to the serial interval for 
measles. If the reporting interval is different than the serial interval of the disease a 
different estimation procedure is needed. A continuous time model and estimation 
framework, on the other hand, can accommodate the common situation where the 
reporting interval and the serial interval are not similar. In previous work, we addressed 
the estimation of continuous time deterministic models for infectious disease spread 
with seasonal transmission parameters [7]. While deterministic models can reasonably 
capture incidence dynamics in large cities where the disease is endemic, infectious 
diseases are inherently stochastic in nature, and in communities below around 300,000 
people stochastic fadeout of measles cases is commonly observed [6].  Deterministic 
models are incapable of capturing the disease dynamics in these cases.  For these 
reasons, a model with both measurement and dynamic noise is desired. In this paper, we 
present a framework for estimation of continuous time infectious disease models from 
long-term time series data that considers both model and measurement noise. We 
demonstrate the effectiveness this approach using measles data from New York City 
and Bangkok. 

2. Problem Formulation 
The classic SIR framework model with a seasonal transmission parameter is 

used in our study. This model is sufficient to capture the key features of measles 
dynamics since life-long immunity is typically retained following infection. It has long 
been observed that measles incidence exhibits a seasonal pattern that appears to be 
correlated with school terms [3,9].  In the continuous time SIR model, we include a 
seasonal transmission parameter β(y(t)), also called the contact rate.  Here, the function 
y(t) maps the overall horizon time to the elapsed time within the current year.  This 
forces β to have a yearly periodicity. 
2.1. Stochastic Continuous Time Formulation 

The differential equations describing the seasonal stochastic continuous time 
SIR model can be written as, 

€ 

dS
dt

=
−β(y(t))S(t)I(t)

N
+ µ(t)N +ε S  (1) 

€ 

dI
dt

=
β(y(t))S(t)I(t)

N
− γN +ε I  (2) 

where S is the number of susceptibles and I is the number of infectives.  System 
parameters include the birth rate, µ(t), which is known and time varying, and N and γ, 
the reported population and the recovery rate respectively, which are known scalar 
inputs.  Dynamic noise terms εS and εI are included for the susceptible balance and the 
infective balance equations respectively. 
 Prevalence refers to the number of individuals in the population who are 
infected at a given point in time, whereas incidence is the number of new infectious 
occurring over a given time interval. The available reported case data is measles 
incidence, but the state variable I(t) represents the measles prevalence.  Over a 
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particular reporting interval, i, the incidence can be calculated by integrating the rate of 
infection, 

€ 

β(y(λ))I(λ)S(λ)
N

dλ
ti−1

ti∫ . (3) 

To include this in the estimation formulation, a new state variable φ(t) is introduced to 
represent the cumulative incidence at time t. 

€ 

dφ
dt

=
β(y(t))S(t)I(t)

N
 (4) 

Since not every individual who becomes infected will seek medical assistance, not 
every infection is reported.  This underreporting can be significant and must be 
considered in the estimation. The output equation for the reported cases is given by,  

€ 

Φi =ηi φi −φi−1( ) +εφ  (5) 

where εφ is the measurement noise term, φ is the estimated cumulative incidence at a 
point in time, Φi is the reported incidence over a given time interval, and ηi is the time 
varying reporting factor that accounts for the degree of underreporting. We use a 
standard susceptible reconstruction procedure to estimate this reporting factor. 
 The estimation problem can be written as a nonlinear programming problem 
with the differential and algebraic constraints described above. There are a number of 
techniques for solving this class of optimization problem. Here, we discretize all the 
state and algebraic variables and include the complete set of discretized equations as 
constraints in the nonlinear programming problem. The Explicit Euler technique was 
used to discretize the system, however, we have used Radau collocation techniques with 
similar results. Without further restriction of β(y(t)), this estimation problem has all the 
challenges of classic inverse problems including ill-conditioning and non-uniqueness. 
The seasonal parameter β(y(t)) was discretized less finely than the differential equations 
and the profile was regularized. Total variation regularization is used since it allows for 
discontinuous jumps as expected from a seasonal transmission parameter correlated 
with school term holidays.  Combining the regularization term with a least-squares 
objective for the noise terms and initial state conditions gives the following objective 
function, 

€ 

min  a εSi
2

i ∈ ℑ
∑ + b ε Ii

2

i ∈ ℑ
∑ + c εφi

2

i ∈ ℜ
∑ + d S0 − Sinit( )2

+ e I0 − Iinit( )2
+

1
ρ
Δβ 1 (6) 

where ℑ is the set of finite elements, ℜ is the set of reporting intervals, a, b, and c are 
weighting terms based on assumed standard deviations of the residuals, and d and e are 
weights placed on the residuals of the initial conditions.  In the regularization term, Δβ 
is a first order approximation of dβ/dt, and ρ is the regularization parameter that is 
calculated using the standard L-curve method [10].  As written, the regularization term 
is non-differentiable, however, it is easily reformulated by writing, 

€ 

1
ρ
Δβ 1 =

1
ρ

Δβ j
+ + Δβ j

−

j ∈ B
∑  (7) 

and including the following constraints, 
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€ 

Δβ j − Δβ j
+ + Δβ j

− = 0  (8) 

€ 

Δβ j
+ ,  Δβ j

− ≥ 0  ∀ j ∈B  (9) 

where B is the set of discretizations for β within the year.  This reformulated objective 
function with constraints (8) and (9), along with the constraints arising from the 
discretization of (1), (2), and (4), and the reporting factor adjustment (5) give rise to a 
large-scale nonlinear programming problem with purely algebraic constraints. 
 
2.2. Data  

The data sets used in this work contain yearly population and birth rate data, 
monthly measles case count data from New York City from the years 1947-1965 [11], 
and monthly measles case count data from Bangkok for the years 1975-1984.  In the 
Thai data, there is regular passive surveillance for measles coupled with active 
surveillance to assess the performance of the passive surveillance system.  All data is 
anonymized, and laboratory confirmation is reported when available.  These two 
locations have very different school term holidays, allowing us to show the correlation 
between school terms and seasonal transmission.  New York city has a long summer 
school holiday lasting from the end of June to mid September, while Bangkok has two 
long school holidays: one from the beginning of March to the end of April and one the 
entire month of October. 

An additional challenge in the Bangkok data is missing information for the 
year 1979.  To account for this, our model is integrated through this period, however the 
estimation is weighted to exclude these points from the objective function.  Both data 
sets suffer from significant under-reporting.  Susceptible reconstruction techniques have 
shown that about 1 in 9 cases are reported in New York City across the entire time 
horizon studied.  Bangkok, however, has a varying reporting fraction that for this work 
is assumed to be linear over the time horizon and ranging from about 1 in 100 cases 
reported at the start of the time horizon to about 1 in 20 cases at the end. 

3. Estimation Results  
Estimations were performed for New York City and Bangkok using 240 finite 

elements per year and 60 discretizations of the seasonal transmission parameter per 
year.  The problems were formulated in AMPL [12] and solved using the nonlinear 
interior-point method IPOPT [13]. 
3.1. New York City  

The estimation for New York City produced essentially zero mean profiles for 
all model and measurement noise terms.  The characteristics of these estimated noise 
terms are shown in Table 1.  The model noise in the susceptible balance equation (εS) 
however, showed an apparent correlation in time.  This would indicate that the 
susceptible dynamics are not being appropriately captured with this simple model, and 
future work will address improvements in this area.  Nevertheless, estimated mean 
percentage of susceptibles in the population was 4.3%, which is similar to other 
literature values for measles [8]. 

Table 1. Noise terms for New York City 

Residuals εS  (1/day) εI  (1/day) εφ  (1/day) 
Mean -14.973 -0.896 -0.477 
Stand. Dev. 172.331 41.076 10.478 
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Fig. 1 shows the estimated seasonal transmission profiles, β.  The profile 

shows seasonality that coincides almost perfectly with the school term summer holiday 
that occurs from the end of June to mid September. 

 

 
Figure 1: Seasonal transmission parameter for NYC with the school holiday indicated in grey 

3.2. Bangkok  
The estimation for Bangkok gave results similar to the New York City 

estimation.  The reporting fraction is very low for Bangkok, and the data contains 
significant noise, but the model and measurement noise terms all have near zero mean 
as shown in Table 2.  Again, the model noise corresponding to the susceptible balance 
equation do not appear to be independent in time, however, the estimated mean 
percentage of susceptibles in the population was still 4.4%. 

 
Table 2. Noise terms for Bangkok 

Residuals εS  (1/day) εI  (1/day) εφ  (1/day) 
Mean -14.262 -0.480 -0.104 
Stand. Dev. 225.630 24.386 1.902 
 
The estimated profile for the seasonal transmission parameter is shown in Fig. 

2.  The profile shows strong agreement with the school holidays that occur from the 
beginning of March through the end of April and the whole of October, although a 
delay of approximately one month is apparent.  This may be due to delayed reporting or 
an artifact of the long reporting interval.  

4. Conclusions 
The usefulness of reliable disease models for further understanding the dynamics of 
infectious diseases and planning public health policy is apparent. The model described 
here appears to capture the dynamics of measles effectively for two diverse cities, and 
the continuous time formulation allows us to make immediate use of the data with 
larger reporting intervals. The estimated transmission parameter profiles for both cities 
demonstrate strong seasonality correlated with school term holidays despite the very 
different school holiday schedules for these locations. These estimations not only help 
improve our understanding of infectious disease spread, but also help quantify the effect 
of closing schools, a commonly proposed control measure for emerging infectious 
diseases. 
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Figure 2:  Seasonal transmission parameter for Bangkok with school holidays indicated in grey 

 For large cities where diseases are endemic, deterministic models can 
effectively reproduce the observed dynamics, however, in smaller communities were 
stochastic fadeout is evident, stochastic models are necessary. Future work will include 
a thorough analysis of the estimation framework on smaller community sizes.  
Furthermore, the approach is suitably efficient and flexible, and future work will 
investigate more complex model structures. Continued study will improve our 
understanding of the system, improve prediction, and improve our ability to control 
endemic and emerging infectious diseases. 
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