APM Tutorial: Improving load following capabilities of natural gas and coal-fired boilers

Jose Mojica Brigham Young University

20 March 2012

Discussion Objectives

- Cogeneration opportunities
 - > UT Austin example
 - > Challenges: Boiler fatigue
- Model forms
 - > Empirical MPC
 - System identification
 - First Principles
 - Model development
- Comparisons of PID vs Non-linear MPC
- Future Work

Cogeneration

E‰onMobil

Typical Industrial Cogeneration System

3000 large onshore wind turbines

\approx half of **Belgium's annual residential electricity** demand

Source: Meidel, R.W. (2012) Cogeneration, Challenges and Opportunities: Meeting Cogeneration TArgets in the Marketplace.

APMonitor User's Group

University of Texas at Austin

Diagrams Courtesy Kody Powell, UT Austin

March 20, 2012

APMonitor User's Group

University of Texas at Austin

Diagrams Courtesy Kody Powell, UT Austin

March 20, 2012

APMonitor User's Group

Boiler Fatigue

Load Cycling

Photos & Diagram Courtesy NREL http://www.nrel.gov/docs/fy11osti/51579.pdf

APMonitor User's Group

Boiler Fatigue

Photos & Diagram Courtesy NREL <u>http://www.nrel.gov/docs/fy11osti/51579.pdf</u>

March 20, 2012

APMonitor User's Group

Control System Developments

- > Typically based on:
 - > Operator Knowledge
 - Safe
 - Meet Requirements
 - > Successful
 - > Perceived Limitations
 - > Challenge assumptions
 - Optimize everything

Special Controls

- Most processes have unique operating conditions and requirements
- Ex: Boiler for steam/energy production
 - Load change at specified rate
 - > Wear and tear
 - > Emissions

Empirical Models

- Can help in identifying cause and effect relationships within the boiler's MVs and CVs
- Information from empirical models can help develop better first principles models

APMonitor User's Group

Model Identification

Inputs: gas flow, supply water flow

Outputs: (1) drum level (2) steam temp (3) steam pressure (4) drum pressure (5) steam flow

Confidence Intervals

Step Response

March 20, 2012

APMonitor User's Group

Model

- Model Source
 - Operational knowledge from
 - > Literature values
 - Heat transfer equations
 - Material and energy balances
- Model Form
 - Differential and Algebraic Equations (DAEs)
 - Combined Empirical and First Principles forms

Nonlinear Model Predictive Control

- > Trajectory tracking
- Other constraints
 can be specified
 - Rate of Temperature Change
 - Emissions, Costs,
 Process unit life, etc.

Nonlinear Model Predictive Control

- Effective over entire range of interest
 - Load Following
 - Large Disturbances
 - Steady State
 - Transient
- Large-scale problems
 - > Sparse NLP solvers
 - Simultaneous
 Solution Approach

 $\min_{u} J(x, u, \Delta u)$ s.t. 0 = f(x, x, u) 0 = g(x, u) 0 < h(x, u)

PID Controller

> SIMPLE

- > Easy to Use
- > Effective for:
 - Steady state
 - Small Disturbances
- > Ineffective
 - Load Cycling
 - Frequently Saturated
 - > Violated Rate Constraints

PID Start-Up

NLC Start Up

Comparison of Set Point Changes

PID Control

Nonlinear Control

Model-Based Controller

- Challenges restrictions by driving to actual process constraints
 - > Optimized load changes
 - i.e. Faster/slower, boiler life
- > Explicitly Targeted Constraints

Future Work

- > Empirical MPC
 - Model identification
 - cause and effect relationships within the boilers MVs and CVs
- Develop thermal stress model of thermal sensitive areas (super heated steam headers)
- Forecasting:
 - > Energy availability
 - > Time of day pricing
 - > Peak power demands
- > Energy storage
 - > Optimize design and operation
 - Meet peak demand with lower base-load

Acknowledgements

- Kevin Jensen and Dr. John Hedengren
- > University of Texas at Austin
 - Kody Powell and his team

