Name

Practice Exam #3

Chemical Engineering 436 (Section 1) Professor John Hedengren Closed Book, 3 Pages of Notes, Single Sided or 1.5 Pages Front/Back

Time Limit: 50 minutes

Hints on getting more points:

1. If you do not get all the way through a problem, please indicate the exact equations and solution method that you would use.

2. More points will be given if your answers are legible and easy to read.

- 3. Circle or box your final answer.
- 4. Pace yourself with recommended times for each problem

Problem 1 (30 pts) \sim 15 minutes Problem 2 (30 pts) \sim 15 minutes Problem 3 (40 pts) \sim 20 minutes

f(t) in Time Domain	F(s) in Laplace Domain	
$\delta(t)$ unit impulse	1	
S(t) unit step	$\frac{1}{s}$	
$t \hspace{0.5cm} ext{ramp with slope} = 1$	$\frac{1}{s^2}$	
t^{n-1}	$\frac{(n-1)!}{s^n}$	
e^{-bt}	$\frac{1}{s+b}$	
$1-e^{-t/ au}$	$\frac{1}{s(\tau s+1)}$	
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	f(
$\frac{1}{\tau_1 - \tau_2} \left(\exp\left(-t/\tau_1\right) - \exp\left(-t/\tau_2\right) \right)$	$\frac{1}{\left(\tau_{1}s+1\right)\left(\tau_{2}s+1\right)}$	
$\frac{1}{\tau^n (n-1)!} t^{n-1} \exp\left(-\frac{t}{\tau}\right)$	$\frac{1}{\left(\tau s+1\right)^n}$	
$\frac{1}{\tau\sqrt{1-\zeta^2}}\exp\left(-\frac{\zeta t}{\tau}\right)\sin\left(\sqrt{1-\zeta^2}\frac{t}{\tau}\right)$	$\frac{1}{\tau^2 s^2 + 2\zeta \tau s + 1}$	

f(t) in Time Domain	F(s) in Laplace Domain
$\frac{df}{dt}$	sF(s)-f(0)
$\frac{d^nf}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - \dots$ $- sf^{(n-2)}(0) - f^{(n-1)}(0)$
$\int f(t)$	$rac{F(s)}{s}$
$f\left(t-t_{0}\right)S\left(t-t_{0}\right)$	$e^{-t_0s}F(s)$

(a) What is the expression for $U_1(s)$ and $U_2(s)$?

(b) What is the expression for y(t)? Sketch the response y(t) on the graph above.

Math hint: $e^a e^b = e^{a+b}$

2. (30 pts) A PI controller and second-order process transfer function create a closed loop response.

The objective is to find the value of K_c in the PI controller that will give a particular underdamped (oscillating) response. The value of the integral reset time is fixed at $\tau_l = 2$. The Laplace transform of a PI controller is shown below.

$$u(t) = u_{bias} + K_c e(t) + \int \frac{K_c}{\tau_I} e(t)$$
$$U(s) = K_c E(s) + \frac{K_c}{\tau_I s} E(s) = K_c \frac{\tau_I s + 1}{\tau_I s} E(s) \text{ with } PI(s) = \frac{U(s)}{E(s)}$$

The closed loop transfer function relates the Output Response (Y(s)) to the input change in Set Point (SP(s)). What are the K_c values that give a stable controller?

a) What are the parameters of a second order system that approximate this closed loop response?

$$\frac{Y(s)}{SP(s)} = \frac{K}{\tau_s^2 s^2 + 2\zeta \tau_s s + 1} e^{-\theta s}$$

K:_____

- *τ_s*:_____
- θ:_____
- ζ:_____

b) Write second order system as a state space model where u is the set point.

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx + Du$$

B:

C:

D:

