Name \qquad

Practice Exam \#3

Chemical Engineering 436 (Section 1)
 Professor John Hedengren
 Closed Book, 3 Pages of Notes, Single Sided or 1.5 Pages Front/Back

Time Limit: 50 minutes
Hints on getting more points:

1. If you do not get all the way through a problem, please indicate the exact equations and solution method that you would use.
2. More points will be given if your answers are legible and easy to read.
3. Circle or box your final answer.
4. Pace yourself with recommended times for each problem

Problem 1 (30 pts) ~ 15 minutes
Problem 2 (30 pts) ~ 15 minutes
Problem 3 (40 pts) ~ 20 minutes

$f(t)$ in Time Domain	$F(s)$ in Laplace Domain
$\delta(t)$ unit impulse	1
$S(t)$ unit step	$\frac{1}{s}$
t ramp with slope $=1$	$\frac{1}{s^{2}}$
t^{n-1}	$\frac{(n-1)!}{s^{n}}$
$e^{-b t}$	$\frac{1}{s+b}$
$1-e^{-t / \tau}$	$\frac{1}{s(\tau s+1)}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\frac{1}{\tau_{1}-\tau_{2}}\left(\exp \left(-t / \tau_{1}\right)-\exp \left(-t / \tau_{2}\right)\right)$	$\frac{1}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
$\frac{1}{\tau^{n}(n-1)!} t^{n-1} \exp \left(-\frac{t}{\tau}\right)$	$\frac{1}{(\tau s+1)^{n}}$
$\frac{1}{\tau \sqrt{1-\zeta^{2}}} \exp \left(-\frac{\zeta t}{\tau}\right) \sin \left(\sqrt{1-\zeta^{2}} \frac{t}{\tau}\right)$	$\frac{1}{\tau^{2} s^{2}+2 \zeta \tau s+1}$

$f(t)$ in Time Domain	$F(s)$ in Laplace Domain
$\frac{d f}{d t}$	$s F(s)-f(0)$
$\frac{d^{n} f}{d t^{n}}$	$s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{(1)}(0)-\ldots$ $-s f^{(n-2)}(0)-f^{(n-1)}(0)$
$\int f(t)$	$\frac{F(s)}{s}$
$f\left(t-t_{0}\right) S\left(t-t_{0}\right)$	$e^{-t_{0} s} F(s)$

1. (30 pts) A process has two first-order transfer functions in parallel with inputs shown graphically below in the plot.

(a) What is the expression for $U_{1}(s)$ and $U_{2}(s)$?
(b) What is the expression for $\boldsymbol{y}(t)$? Sketch the response $\boldsymbol{y}(t)$ on the graph above.

Math hint: $e^{a} e^{b}=e^{a+b}$
2. (30 pts) A PI controller and second-order process transfer function create a closed loop response.

$$
G(s)=\frac{1}{5 s^{2}+6 s+1}
$$

The objective is to find the value of K_{c} in the PI controller that will give a particular underdamped (oscillating) response. The value of the integral reset time is fixed at $\tau_{I}=2$. The Laplace transform of a PI controller is shown below.
$u(t)=u_{\text {bias }}+K_{c} e(t)+\int \frac{K_{c}}{\tau_{I}} e(t)$
$U(s)=K_{c} E(s)+\frac{K_{c}}{\tau_{I}} E(s)=K_{c} \frac{\tau_{I} s+1}{\tau_{I} s} E(s)$ with $P I(s)=\frac{U(s)}{E(s)}$
The closed loop transfer function relates the Output Response $(Y(s))$ to the input change in Set Point $(S P(s))$. What are the $\boldsymbol{K}_{\boldsymbol{c}}$ values that give a stable controller?
3. (40 pts) A PI controller has the following closed loop response.

a) What are the parameters of a second order system that approximate this closed loop response?

$$
\frac{Y(s)}{S P(s)}=\frac{K}{\tau_{s}^{2} s^{2}+2 \zeta \tau_{s} s+1} e^{-\theta s}
$$

K : \qquad
$\tau_{s}:$ \qquad
$\theta:$ \qquad
$\zeta:$ \qquad
b) Write second order system as a state space model where u is the set point.

$$
\begin{gathered}
\frac{d x}{d t}=A x+B u \\
y=C x+D u
\end{gathered}
$$

A:

B:

C :

D:

